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Abstract

Many widely studied graphical models with
latent variables lead to nontrivial constraints
on the distribution of the observed variables.
Inspired by the Bell inequalities in quantum
mechanics, we refer to any linear inequality
whose violation rules out some latent variable
model as a “hidden variable test” for that
model. Our main contribution is to introduce
a sequence of relaxations which provides pro-
gressively tighter hidden variable tests. We
demonstrate applicability to mixtures of se-
quences of i.i.d. variables, Bell inequalities,
and homophily models in social networks. For
the last, we demonstrate that our method
provides a test that is able to rule out latent
homophily as the sole explanation for correla-
tions on a real social network that are known
to be due to influence.

1 Introduction

Bayesian graphical models provide an intuitive frame-
work for modeling dependence among variables that
often correspond to relationships observed in the
real world. When all variables are observed, the cor-
respondence between graphical models and (non–
experimental) probability distributions is completely
described in terms of conditional independence rela-
tions directly implied by the graph [16]. Often, some
variables cannot be observed, leading to nontrivial con-
straints on the distributions over observed variables in-
cluding non–independence equality constraints [7, 24]
and inequality constraints [10]. Understanding these
constraints can allow us to rule out the otherwise dif-
ficult to test hypothesis that observed correlations are
only due to a common dependence on some unknown
variable. A method for generating constraints for gen-
eral latent variable models would be useful in many

contexts.

For instance, recent high profile studies have identified
counter-intuitive traits (e.g. obesity [5]) as being so-
cially contagious. To take such a claim seriously, one
would have to rule out the alternate possibility that
some hidden factor causes people to become friends
and that this same factor encourages obesity (such a
mechanism is referred to as “latent homophily”). In
fact, a recent paper shows that latent homophily and
influence are non-parametrically unidentifiable in so-
cial networks [21]. Is there a limit to the amount of
correlation between friends that can be explained by
latent homophily?

This question also calls to mind the Bell inequalities in
quantum physics. They place a bound on how strongly
correlated two particles can be if each particle’s state
is described fully by some hidden variable. Violation
of this bound shows us that our assumption is wrong;
the two particles can only be fully described by some
joint “entangled” state [17]. Our method allows us to
construct “Bell inequalities” for other quantities like
correlations in social networks. If the correlations be-
tween friends are explained by latent homophily, they
will obey some bound. Violating this bound allows us
to rule out latent homophily as the explanation for
correlations. These bounds can be considered tests of
the proposed hidden variable model.

For any model, consider the set of all observable prob-
ability distributions consistent with the model. We use
sum-of-squares methods and semidefinite programs to
create a sequence of convex relaxations for this set [15].
Our ability to create this sequence of relaxations re-
quires only that the observable probabilities can be
written as polynomials in terms of the unknown condi-
tional distributions. Clearly, this includes all graphical
models and many generalizations. We focus on pro-
gressively tighter approximations of this set because
any general, exact method would also be able to gen-
erate all Bell inequalities, a problem known to be com-
putationally difficult, discussed in Sec. 4.1. The tech-



nique is most powerful when the space of observable
probability distributions is already convex, so that our
sequence of convex relaxations can converge exactly, in
principle. For instance, this is the case for any graphi-
cal model which contains a single latent root node con-
nected to any number of observed nodes. Furthermore,
because the latent variable serves only to produce con-
vex combinations of other observable probability dis-
tributions, we can ignore it altogether, even though its
domain size may be infinite.

We begin with a simple example to develop geomet-
ric intuition of the technique. Next we describe tools
from algebraic geometry that allow us to produce con-
straints for a large class of models including latent vari-
able graphical models. We then demonstrate some ap-
plications focusing on the increasingly significant prob-
lem of identifying influence in social networks. Finally,
we will contrast our technique to previous work in this
area.

2 Example: Mixture of i.i.d. sequences

Imagine A = (A1, . . . , Ak) is a sequence of k binary
variables, Aj ∈ {T,H}. The null hypothesis is that
each sequence is produced by randomly drawing a
weighted coin from a jar, flipping it k times (i.i.d.),
and then replacing it. Formally, these independence
assumptions mean the probability distribution, P , can
be decomposed as,1

P (A) =
∞∑
R=1

P (R)
k∏
j=1

P (Aj |R), (1)

with the additional constraint that for each weighted
coin, labeled by R, the distribution for the coins is
i.i.d., that is,

∀i, j, j′, P (Aj = H|R = i) = P (Aj′ = H|R = i).

Moving to a more algebraic description, we say that a
weighted coin comes up heads with probability P (Aj =
H|R = i) ≡ ηi ∈ [0, 1], and there are a possibly infi-
nite number of weights for i = 1, . . . ,∞ each of which
occurs with unknown probability P (R = i) ≡ λi. If we
call h(A) the number of heads in a sequence then we
can rewrite our distribution as,

P (A) =
∑
i

λiη
h(A)
i (1− ηi)k−h(A). (2)

1A,B,X,Y,R,E will be used to represent random vari-
ables throughout. Instantiations of variables are typically
omitted for readability but will be made explicit when nec-
essary. We also use vector notation so that, e.g., y is a
vector whose components are labeled with yi.

Figure 1: The shaded region represents accessible
probability distributions according to our model con-
straints. For contrast, all probabilities in the simplex
are below the solid line and all exchangeable distri-
butions are below the dashed line. For the observed
distribution, ŷ, our model is ruled out by either hid-
den variable test represented by the dotted lines.

We must remember to constrain λi, ηi ∈ [0, 1], and∑
i λi = 1. What constraints does this model put on

the observed distribution, P (A)?

For a given weighted coin, the distribution of out-
comes for flips i and j should be i.i.d., but the un-
observed weight serves as a confounder. The observa-
tion that allowed distributions must be exchangeable,
P (A1, . . . , Ak) = P (Aπ(1), . . . , Aπ(k)) for any permu-
tation π, simplifies the problem but is not a sufficient
constraint. Methods like implicitization [11] and quan-
tifier elimination [8] are prohibited by allowing the size
of the latent variable’s domain to be infinite.

Instead, we take a geometric approach, where we start
by constructing the vector y whose entries are the
probabilities P (A) for each A ∈ {H,T}k, and there-
fore resides in a 2k dimensional simplex. In that case,
we note that Eq. 1 has the form of the convex hull
of a surface where each extreme point is specified by
the probability distribution for an i.i.d. sequence for a
single weighted coin.

If we take the simple case of two coin flips, k =
2, A ∈ {HH,HT, TH, TT}, then, to simplify further,
we note that, e.g. P (TH), P (TT ) can be fixed by
the requirements of normalization and exchangeabil-
ity. This leaves us with(

y1 = P (HH)
y2 = P (HT )

)
=
∑
i

λi

(
η2
i

ηi(1− ηi)

)
. (3)

The shaded region in Fig. 1 shows the possible prob-



abilities. We refer to extreme points as vectors of the
form (η2

i , (1 − ηi)ηi), while other points are formed
as convex combinations of these extreme points. In
this case, we can easily enumerate the remaining con-
straints on P (A). We note that all extreme points of
the distribution have the form P (HT ) =

√
P (HH)−

P (HH) (the curved boundary of the shaded region) so
we can see that convexity allows all distributions sat-
isfying the conditions P (HT ) ≤

√
P (HH) − P (HH)

and positivity.

We seek a more general approach that will work for
high-dimensional examples, even when an exact de-
scription of the convex hull is not forthcoming. We
note that a convex hull can also be given as an inter-
section of half–spaces of the form {y : b · y ≤ c} [20].
Clearly, our simple example is not a polytope, so a fi-
nite number of half–spaces will not suffice to describe
it. However, in practice, we do not need an exact de-
scription of the convex hull. Instead, after observing
many sequences of A1, . . . , Ak, we can determine the
distribution of observed variables P̂ (A) and we want
to test whether this distribution could have been pro-
duced by our null model. In our example, this is equiv-
alent to determining if P̂ (A) produces a point in the
shaded region of Fig. 1. If we find our point outside the
shaded region, we can rule out our null model as a pos-
sible explanation. If, on the other hand, our distribu-
tion is inside the shaded region, we can only conclude
that our null model is one possible explanation.

To construct a test capable of ruling out a latent
model, we can test membership in any half–space that
contains our convex set. In this example that means
we are looking for vector b, constant c, so that

b1η
2 + b2η(1− η) ≤ c, ∀η ∈ [0, 1].

If we were to observe P̂ (HH) = P̂ (TT ) =
0.2, P̂ (HT ) = P̂ (TH) = 0.3, then ŷ = (0.2, 0.3),
shown in Fig. 1. Clearly, this point is outside our con-
vex shaded region.

To find a test demonstrating that ŷ is outside of our
set we want a b so that b · ŷ > c. For instance, one
can easily verify that b1 = 0, b2 = 1, c = 1/4 or b1 =
−1/5, b2 = 1, c = 5/24 are such hyperplanes, shown as
dotted lines in Fig. 1. These tests suffice to rule out
the null hypothesis that our sequences were produced
from an unknown distribution of weighted coins. Of
course, if ŷ is an experimental distribution, it is only an
estimate of the true distribution, and we can only rule
out the null hypothesis with some confidence. In this
example, we are able to visualize the solution and find
simple tests by hand, but generally, the dimensionality
of our problems will be large, so we must develop tools
to automatically find good tests.

3 Algebraic geometry

We consider models where the model parameters may
be restricted to any semi–algebraic set, that is, a sub-
set of Rm defined by a finite number of polynomial
equalities and inequalities. For graphical models the
“parameters” will be conditional probabilities; this use
of the word should not be confused with “parametric
models”, which is not what we are considering. For
simplicity, we will consider inequalities only. We as-
sume, as is the case for graphical models, that equality
constraints may be used to simply reduce the overall
number of parameters, and constraints will generally
include positivity and normalization.

K = {x ∈ Rm : gi(x) ≥ 0, i = 1, . . . , l}

Furthermore, the observable quantities, y ∈ Rn, must
be written as a convex combination of polynomials
over the model parameters, fi(xj),xj ∈ K.

yi =
∑
j

λjfi(xj) (4)

with λi ≥ 0,
∑
i λi = 1. For graphical models, we con-

sider “observables” to be measurable properties of a
system like expectation values, e.g., y1 = 〈δA1,H〉 =
P (A1 = H). Whereas, the λi will represent probabili-
ties of latent variables which we are marginalizing out.

We call the set of possible y, given the model con-
straints, M. Notice that Eq. 4 can be represented as
the convex hull of a set (conv), that is, all possible
convex combinations of a set of extreme points,2

M = conv({y ∈ Rn : ∃x ∈ K,y = f(x)}) (5)

An alternate representation of this convex set is given
in terms of the intersection of half–spaces containing
it [20].

B = {b ∈ Rn : ∀x ∈ K,y = f(x), 1− b · y ≥ 0}
M = int(B) ≡ {y ∈ Rn : ∀b ∈ B,b · y ≤ 1}.

(6)

Note that this formulation implicitly presupposes that
the origin is inside our convex set. This condition can
be insured with a simple translation of the vector y.
E.g. y → y −

∫
K
dxf(x)/

∫
K
dx. Because the half–

space described by each b ∈ B contains all the extreme
points of the set, y = f(x),∀x ∈ K, it also contains the
convex hull of these points.

Given a representation of the convex hull, B, one can
determine that a point ŷ is outside M by finding a

2Restrictions on the λi in Eq. 4 may lead to a smaller
set of possible observables M′ ⊆ M. In what follows, we
will construct a sequence of outer relaxations that converge
towardsM, so ifM is already a relaxation ofM′, we will
be ultimately limited in how well we can approximate it.



b ∈ B such that b · ŷ > 1. That is, by showing that
ŷ is not in the intersection of half–spaces comprising
M. If we consider a subset RB ⊂ B, this set amounts
to a convex relaxation on the original set M. That is,

b ∈ RB ∧ b · ŷ > 1→ ŷ /∈M,

but for this relaxation, the converse is not true.

SOS Relaxations To construct a subset of B which
can be efficiently described and optimized over, we will
need some standard results about positive and sum-of-
squares (SOS) polynomials. See [15] for a review of the
large body of work about SOS and positive polyno-
mials and their relationship to semi-definite program-
ming. For completeness, we summarize the key ideas
here.

Eq. 6 describes B as all b so that 1 − b · f(x) ≥ 0,
for x ∈ K. In other words, for some polynomials in x,
parametrized by b, we want only the polynomials that
are non-negative on K. When dealing with positive
polynomials, the simplest relaxation is to instead con-
sider bounded degree sums-of-squares polynomials [15]

SOSd = {s(x) : ∃qi(x) ∈ R[x],deg(qi(x)) ≤ d/2,

s(x) =
∑
i

qi(x)2}.

By construction, polynomials in SOSd are guaranteed
to be non-negative. If we can write 1−b ·f(x) = s0(x),
for s0 ∈ SOSd, we can guarantee 1− b · f(x) ≥ 0. 3

Efficient computational methods using SOS polynomi-
als are enabled by the fact that they can be written in
the form

s(x) = zᵀAz,

where z = (1, x1, x1x2, x1x
2
2...) is a vector of mono-

mials in the variables and A � 0 indicates a posi-
tive semidefinite matrix. Then our condition for 1 −
b · f(x) = s0(x) amounts to linear relationships be-
tween coefficients along with a linear matrix inequality,
A � 0. These types of problems are called semidefinite
programs(SDP) and many powerful techniques exist
to solve them.

In our case, because we only demand positivity on a
bounded region K, defined by polynomials gi(x) ≥ 0,
we make things a little easier. The set of all polynomi-
als positive on K is called the “positive cone” of K and
includes SOS polynomials by default. Roughly, this is
just the set of polynomials that are formed as sums
of products of the gi(x) and s(x) ∈ SOS. Clearly, if
gi(x) ≥ 0,∀x ∈ K → s(x)gi(x) ≥ 0,∀x ∈ K and
s(x)g1(x)g2(x) ≥ 0,∀x ∈ K, and so on.

3In general, it is not true that every positive polynomial
can be written as an SOS.

Therefore, we define the set, RB1 ⊆ . . . ⊆ RBd ⊆ B.

RBd ={b ∈ Rn : ∀x ∈ K, si(x) ∈ SOSd,

1− b · f(x) = s0(x) +
∑
i

si(x)gi(x)}

By construction, s0(x) +
∑
i si(x)gi(x) ≥ 0 for all x ∈

K. For any b ∈ RBd, this proves 1− b · f(x) ≥ 0, and
for any y in the convex hull of f(x), this will also be
true. This amounts to a sequence of convex relaxations
of the set M.

M = int(B) ⊆ int(RBd) . . . ⊆ int(RB1)

Exactly as defined, we have not included all polynomi-
als in the positive cone of K(we excluded terms with
products of gi(x) for computational ease), so this se-
quence does not necessarily converge to M. Including
these terms can provide theoretical, if computationally
impractical, guarantees of convergence [6].

For a specific observed distribution ŷ, we search for a
hyperplane b ∈ RBd so that b · ŷ is maximized.

max
b,si(x)

b · ŷ

1− b · f(x)−
∑
i

si(x)gi(x) = s0(x)

si(x) ∈ SOSd

(7)

This format corresponds to a SOS program and it can
be efficiently translated into a semidefinite program
and solved numerically [15]. We use SOSTools [19] in
MATLAB to convert SOS programs to SDP which
are then solved by, e.g., SeDuMi [23], example code is
available [1]. In practice, even very large SDPs can be
solved efficiently. Unfortunately, it is difficult to con-
struct rigorous bounds on their complexity.

For the example in Sec. 2, x ∈ R1 and corresponds to
the variable we called η, the weight of the coin. On the
other hand, ŷ ∈ R2, because we have two observables
in this case. To check if ŷ were produced according
to the model described, we would solve Eq. 7 with
ŷ = (0.2, 0.3), g1(x) = x(1 − x), f1(x) = x2, f2(x) =
x(1 − x). The value of d can be increased to produce
tighter bounds. Solving this SOS is constructive in that
it finds b and specific SOS polynomials proving that
1− b · y ≥ 0, for any y ∈ M. Furthermore, if we find
that b · ŷ > 1, this constitutes proof that the statistics
ŷ could not have been generated by our model.

4 Application to graphical models

A probabilistic graphical model, or Bayesian network,
consists of a directed acyclic graph where each node is



a variable, and the edges reflect the relationships be-
tween these variables. The graph has a rigorous mathe-
matical interpretation which can be described via con-
ditional independence relations among the variables,
or, equivalently, by a specific decomposition of the
probability distribution in terms of conditional prob-
ability distributions. For a review, see [16]. Although
these graphs can also be given a causal interpretation,
allowing the prediction of some variables given that
others are fixed (an intervention), we will not consider
interventional distributions here.

4.1 Bell inequalities

Quantum physicists rarely appreciate the fact that Bell
inequalities are a special case of inequality constraints
for a latent variable graphical model. Bell inequali-
ties refer generally to any tests of “local realism” in
quantum physics, while we will consider a specific re-
alization known as the CHSH inequality. See [14] for a
pedagogical introduction and [17] for a more nuanced
exploration of the meaning of such tests (see App. A
for a primer to the alternate formalism). Briefly, we
imagine two detectors, i = 1, 2 that are separated so
that no signals can pass between them. Each detec-
tor can make only one of two possible measurements
Xi = {0, 1} resulting in a binary outcome, Ai = {0, 1}.
The assumptions of local realism are summarized in
Fig. 2. Basically, we assume that party i’s measure-
ment outcome depends only on her own measurement
choice(“local”) and some hidden variable(“realism”).

P (A1, A2|X1, X2) =
∑
R

P (R)P (A1|X1, R)P (A2|X2, R)

This formula has the form required by Eq. 4. This ex-
ample has already been thoroughly studied; its struc-
ture is known to be a convex polytope whose nontrivial
facets are given by inequalities of the form [14],∑
Ai,Xi∈{0,1}

P (A1, A2|X1, X2)δA1⊕A2,X1·X2 ≤ 3, (8)

where⊕ is defined as addition modulo 2. We can repro-
duce this well-known bound in a novel way by solving
Eq. 7.

Practically, for any equivalent experimental setup (two
observers who have two measurement choices resulting
in one of two outcomes), we can measure the quantity
on the LHS of Eq. 8. For any model of the form in
Fig. 2 we expect this quantity to be bounded by 3.
In particular, if the two parties are space-like sepa-
rated (no signal from one party could reach the other
in time to have an effect), all models obeying classi-
cal, relativistic physics have that form. If, on the other
hand, we measure a value larger than 3, we can rule

out this model. This is precisely what has been done
and is one of the strongest pieces of evidence in favor of
quantum theory. The maximum value achievable from
measuring entangled quantum particles is ≈ 3.4 [14].

At  Bt  

At-1 Bt-1

RA RB

E  X1 R X2

A1 A2

Figure 2: Graphical model describing the assumptions
of “local realism” in a CHSH experiment. Each out-
come Ai depends only on the local measurement choice
Xi and some common hidden variable R.

We could extend the model in Fig. 2 to more parties
or more measurement settings. The space of observed
distributions will still be described by a convex poly-
tope, but it will have many facets and it has been
shown that deciding membership in these polytopes is
NP complete [18]. This shows that any general, exact
method for deciding whether a distribution is com-
patible with a latent variable graphical model will be
computationally difficult, at least in some cases. This
motivates our approach to instead look for a sequence
of progressively tighter relaxations.

4.2 Latent homophily models

Sociologists often observe that individuals who are
connected in a social network exhibit behaviors that
are highly correlated. This correlation is usually ex-
plained via two effects: homophily and influence. In-
fluence, or contagion, supposes that actors change to
become more similar to their neighbors in the network.
Whereas, homophily posits that individuals form con-
nections in the network precisely because they are al-
ready similar.

Suppose Alice is friends with Bob, a smoker, and some
time later Alice begins smoking. If Alice would not
have begun smoking if she had not known Bob, we
would certainly say she was influenced by Bob. An
alternate explanation is that Alice and Bob both en-
joy high risk lifestyles, and that is why they became
friends. Alice is already predisposed to start smoking,
and would have begun even if she had never met Bob.
A typical sociological study would attempt to con-
trol for this covariate – either by measuring Alice and
Bob’s risk-taking tendencies or some substitute that
indicates those tendencies. In this case, the difficulty
comes from trying to measure all possibly relevant co-
variates; this is the approach taken in [3, 5].



In Fig. 3, we start with the most general picture of
latent homophily. We have two actors Alice(A) and
Bob(B) whose actions we observe at various time steps,
t = 1, . . . , T . We consider some hidden attributes
of Alice(RA) and Bob(RB) and E depends somehow
on both hidden attributes and represents information
about edges between them (e.g., a time-dependent se-
quence of edges, possibly directed or weighted, possi-
bly including edges of various kinds). Unlike previous
works [2, 12], we do not assume that E depends sym-
metrically on RA and RB , an important consideration
in networks with asymmetric (directed) links.

Given E, what correlations are possible between A and
B? Below we use the definition of the graphical model
[16] in Fig. 3 along with some simple manipulations
using Bayes’ rule.

P (A1:T , B1:T |E) =
∑

RA,RB

P (RA, RB |E)×

∏
t

P (At|At−1, RA)P (Bt|Bt−1, RB)
(9)

As written, the correlations possible between A and B
are not very restricted. In fact, [21] have shown that
it is not possible to distinguish between correlations
from latent homophily, given by the structure of Fig. 3,
and influence, represented by a direct link from Bt−1

to At when an edge from B to A exists. Part of this
difficulty is due to the fact that the transition proba-
bilities P (At|At−1, RA) may change at each time step,
allowing essentially arbitrary dynamics. We show that
eliminating this freedom allows us to find tests that
rule out latent homophily.

At  Bt  

At-1 Bt-1

RA RB

E  X1 R X2

A1 A2

Figure 3: A slice of a latent homophily model. We ob-
serve a sequence of actions for A1, . . . , AT (sometimes
abbreviated A) and B that depend on some hidden
attributes RA, RB . Presence and properties of edges
between them, E, depend in some arbitrary way on
RA, RB .

Static latent homophily model We now define
static latent homophily models (SLH) by demand-
ing the crucial addition of stationarity: the transition

probability does not change over time.

∀t, t′, r : P (At = a|At−1 = b, R = r)
= P (At′ = a|At′−1 = b, R = r) .

(10)

The homophily model of [21] also looks like Fig. 3, but
without the stationary assumption in Eq. 10.

The stationary Markov assumption restricts the prob-
ability of observing certain sequences. If Bob’s state is
a sequence of coin flips, it is highly unlikely that Al-
ice independently produces the same sequence without
seeing (or being influenced by) Bob’s coin flips. We will
make this intuition more precise in the next section.

4.2.1 Algebraic geometry of SLH

Looking at Eq. 9, we can see that we have just de-
fined a polynomial mapping from the small space of
conditional probabilities to the larger space of Alice
and Bob’s observed joint probability distribution. The
structure of Eq. 9 is a convex combination over the
(possibly infinite) factorizable joint distributions.

For simplicity, we now consider a SLH where we re-
strict ourselves to variables At, Bt ∈ {±1}, and we
have conditioned on some arbitrary value for E (e.g.,
E = 1 for a directional link from A to B). Each vari-
able sequence, A1:T is a Markov chain with associated
transition probabilities that depend on the unknown
value of RA. We denote by α+(α−) the probability
that A flips from +(−) to −(+) at some time step and
α0 = P (A1 = +1). We have similar parameters for
B : β+,−,0. For legibility below, we suppress the func-
tional dependence of these probabilities on RA and we
take A to represent the sequence A1:T .

P (A1:T |RA) =αF+(A)
+ α

F−(A)
−

(1− α−)S−(A)(1− α+)S+(A)

α
1/2(1+A1)
0 (1− α0)1/2(1−A1)

(11)

F±(A) =
T−1∑
t=1

1
4

(1±At)(1−At+1At)

S±(A) =
T−1∑
t=1

1
4

(1±At)(1 +At+1At)

The same equations hold replacing A with B and α
with β.

We can define the parameter vector,

x = (x1, . . . , x6) ≡ (α+, α−, α0, β+, β−, β0).

Now consider the expected outcomes from some arbi-
trary set of measurements

yj ≡ 〈Oj(A,B)〉, j = 1, . . . , n.



In principle, the set of Oj(A,B) could consist of the
indicator functions for each possible outcome (in which
case n = 22T ), but we would like to reserve the ability
to pick a smaller set of measurements for computa-
tional reasons later on. Setting R = (RA, RB), then

fj(xR) ≡
∑
A,B

P (A1:T |RA)P (B1:T |RB)Oj(A,B)

yj =
∑
R

P (R|E)fj(xR)
(12)

This represents a polynomial mapping from R6 → Rn
where the domain is the region

K = {x ∈ R6 : gi(x) = xi(1− xi) ≥ 0, i = 1, . . . , 6}

because each xi represents a different transition (or
prior) probability. The set of all y is just the convex
hull of f(x) where x ∈ K.

4.2.2 Results for a synthetic example

We begin by considering a simple example which is
possible to visualize completely. We observe only two
statistics, the correlation between Alice’s state at t = 2
with Bob’s state at t = 3 and vice versa. We set

(y1, y2) = (〈A2B3〉, 〈A3B2〉),

We also constrain the model parameters, by saying the
Alice and Bob’s states are described by symmetric,
stationary Markov chains, and we arbitrarily fix their
initial states to be −1 with probability 1/8.

α = α+ = α−, β = β+ = β−, α0 = β0 = 1/8.

Even so, for each of the possibly infinite values the
latent variable may take, Alice and Bob may have a
different transition probability.

y1 =
∑
R

P (R)9/16(1− 2α(R))(1− 2β(R))2

y2 =
∑
R

P (R)9/16(1− 2α(R))2(1− 2β(R))
(13)

The space of admissible y for this model (with α, β ∈
[0, 1]) is the convex hull of the shaded region in Fig. 4.
Whereas, for an arbitrary distribution, any point in
the outer dotted box is attainable. We want to test
if, e.g. ŷ = (0.7, 0.1) is in the convex hull of the
shaded region, and therefore an allowed distribution
for this model, by solving Eq. 7. In this case, we find
b = (16/9, 0), so that b · ŷ ≈ 1.24 > 1, along with
polynomials s0(α, β), s1(α, β), s2(α, β) ∈ SOSd (omit-
ted for brevity) so that

1− 16/9 · 9/16(1− 2α)(1− 2β)2

= s0(α, β) + s1(α, β)α(1− α) + s2(α, β)β(1− β)
≥ 0 ∀α, β ∈ [0, 1].

In this example, we recover a facet of the convex hull
exactly. MATLAB code for this example is provided
in [1].
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Figure 4: The outer dotted box corresponds to the al-
lowable region for arbitrary probability distributions.
The convex hull of the shaded region, denoted by the
inner dotted box, corresponds to allowable distribu-
tions for this simple model. Solving Eq.7 for the point
ŷ returns the dashed line.

4.2.3 Results on Digg social network

By construction, our test is only able to rule out latent
homophily as the explanation for correlations. Assum-
ing that correlations are produced by some alternate
model, the test could fail to rule out latent homophily
as an explanation for two reasons. First, it could be
that the alternate model produces correlations that
are actually the same as those produced by latent ho-
mophily (unidentifiable). Second, it could be that the
alternate model produces correlations that are impos-
sible for a latent homophily model, but our relaxation
is so loose that it nevertheless includes these correla-
tions. In App. B, we consider an artificial model of
influence and deduce the minimum strength of influ-
ence necessary for latent homophily to be ruled out.
Below, we demonstrate the usefulness of our test for a
real social network.

We started with a real world social network from the
online news portal “digg.com” [13]. This network had
M = 1, 731, 659 edges and N = 279, 634 nodes. As
in [12], we do a semi-synthetic analysis by simulating a
known influence model on the real graph of this social
network. For our influence model we started all the
nodes in a random state ±1. At each step, we picked
a random pair of nodes A,B who are connected by
a (directed) edge from A → B and had B copy A’s
state. Then we considered three time slices from this



evolution to construct the statistics P̂ (A1:3, B1:3|E =
1), where E = 1 means there exists a directed edge
from A to B. The time between observations should be
chosen long enough so that most nodes have changed,
which we accomplished by setting the observations M
steps apart.

For all results below, we set Oj(A,B) to consist of the
indicator functions for each possible outcome. Solv-
ing Eq. 7, using d = 3 and P̂ as our estimate of the
unknown true distribution P ∗, returned an observable
O(A,B) =

∑
i biOi(A,B), so that ∀P ∈ SLH, 〈O〉P ≤

1, while Ō = 〈O〉P̂ = 1.15. Additionally, the range of
O is needed, so we found that O ∈ [−17, 46], and we
set δ = 46 + 17 = 63. We can use Hoeffding’s inequal-
ity [9] to give confidence that 〈O〉P∗ > 1:

Pr(〈O〉P∗ > 1) = 1− exp(−2M(Ō − 1)2/δ2)

≈ 1− 10−20
(14)

For this problem, we were able to solve Eq. 7 in about
thirty seconds on a contemporary laptop. Increasing
d does lead to tighter bounds, but, in this example,
a relaxed bound suffices to rule out latent homophily
with very high confidence. Increasing M also quickly
increases confidence, making this technique useful for
large datasets.

This example shows that for a realistic influence model
on a real social network, we are able to rule out la-
tent homophily as the sole explanation for correla-
tions. Although sociological studies identifying influ-
ence as a source of correlation do not typically test
whether latent homophily could have explained the
correlations [5], and despite the suggestion in [21] that
no such tests exist, this example demonstrates that
we can realistically construct such tests and rule out
latent homophily with very high confidence.

5 Related work

We previously pointed out that a model like the one
described in Eq. 4 is a semi–algebraic set, that is, a
set specified by a finite number of polynomial equali-
ties and inequalities in the variables x ∈ Rm,y ∈ Rn,
e.g. f1(x,y) = 0, . . . , fl+1(x,y) ≥ 0, . . . , fk(x,y) ≥ 0.
However, we do not directly observe the variables
x, so we are really solving the problem, given ŷ,
∃x, f1(x, ŷ) = 0, . . .. This is considered the projection
of our semi–algebraic set onto the y variables only.
The Tarski-Seidenberg theorem guarantees that the
projection of a semi–algebraic set is, itself, a semi–
algebraic set [8]. That means we are guaranteed a rep-
resentation of the set in terms of a finite number of
polynomial equalities and inequalities involving y only.
Converting from the first representation to the sec-
ond is sometimes called quantifier elimination. This

is the approach used in [8] to identify necessary and
sufficient conditions for an observed distribution to be
generated according to some latent variable graphi-
cal model. Unfortunately, the best known method for
performing quantifier elimination, cylindrical algebraic
decomposition, is doubly exponential in the number of
variables, and is intractable even for simple models like
Fig. 2 or the instrumental inequality model [10].

Implicitization is another algebraic technique that uses
Gröbner bases to find the smallest algebraic variety
(set of polynomial equality statements) that contains a
semi-algebraic set [7,11]. Unfortunately, this approach
has two limitations. First, it can only find equality con-
straints, which may not be sufficient for some models.
For instance, in the CHSH experiment case, the small-
est algebraic variety containing “local hidden vari-
able” models will also contain quantum correlations;
whereas, the CHSH inequalities rule out some quan-
tum correlations [22]. The second drawback of the im-
plicitization approach is that its complexity depends
on the size of the domains of all the model variables
and, in principle, the size of the domain of the latent
variable could be infinite.

A similar approach to implicitization also allows one
to find equality constraints among observed variables
in a latent variable graphical model and is given in
[24]. This approach only suffers one of implicitization’s
drawbacks, i.e. the domain of the latent variable could
be infinite, but we are still restricted to equality con-
straints only, which may be insufficient.

In the Bayesian graphical model literature, the most
studied example of hidden variable tests are the in-
strumental inequalities, which can be derived using
linear programming techniques [16] and were studied
in greater detail in [4]. In [10], they considered the
same general question as this paper, namely, a general
method for identifying inequality constraints in models
with hidden variables. Their approach leads to a spe-
cific necessary (but not sufficient) set of inequalities,
but there is no way to produce tighter inequalities, or,
as in our case, to produce an inequality optimized to
rule out a given observation.

6 Conclusion

We have demonstrated an efficient method for con-
structing hidden variable tests that allow us to deter-
mine if an observed distribution is incompatible with a
hidden variable model even if the domain of the hidden
variables is infinitely large.

In a machine learning or structure learning context, a
typical approach to model selection compares a null
model to an alternate model. One computes the likeli-



hood of generating the data given the model and com-
pares the ratio of likelihoods. This process may result
in accepting a null hypothesis that could have been
ruled out with high probability even before positing
an alternate hypothesis. Conversely, one may find that
an alternate model is more likely to explain some data,
but there may be implications (legal, scientific, etc.) if
you cannot rule out the possibility of explaining the
data with the null hypothesis.

Studies in identifiability for Bayesian graphical mod-
els have either focused on independence relations, or,
when considering non-independence constraints, they
have concentrated on the particular case of the instru-
mental inequalities. Our method applies to a general
class of models, and we have demonstrated its useful-
ness by applying it to the outstanding problem of rul-
ing out latent homophily as the source of correlations
in social networks. Further work will explore results
on some of the many commonly used models to which
our method applies, such as HMMs. Finding necessary
and sufficient conditions for arbitrary hidden variable
models is another laudable goal, but the difficulty of
doing so in the special case of Bell inequalities suggests
it is an unrealistic one.
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A Bell inequalities and graphical
models

In a quantum textbook describing the CHSH exper-
iment, you will see the assumptions of local realism
written in a form which is not obviously the same as
the graphical model we show in Fig. 2. The connec-
tion between the two requires an argument like the
one used in (Pearl, 2009, Sec. 8.2.2). We will give a
brief non-rigorous argument.

Suppose Alice has two measurement choices X ∈
{±1}, and the outcome is A ∈ {±1}. In a quan-
tum textbook, the assumption of local realism is that
A is a deterministic function of X and some (pos-
sibly continuous) hidden variable λ, i.e. A(X,λ) :
{±1} × dom(λ) → {±1}. The same is the case for
Bob’s outcome, B(Y, λ), with measurement choice Y .

Then if we look at the probability of a certain outcome,

Pr(A = a,B = b|X = x, Y = y) =∫
dµ(λ)[A(X = x, λ) = a][B(Y = y, λ) = b],

where µ is some measure on λ. Without loss of gener-
ality, we can decompose λ into three parts, λ0, λA, λB ,
so that A(X,λ0, λA) and B(Y, λ0, λB). That is, A
depends on some local hidden variable and some
joint hidden variable that is shared with B. Now if
we perform the integrals over λA, λB , and say that∫
dµ(λA)[A(X = x, λ0, λA) = a] ≡ P (A = a|X =

x,R = λ0), and similarly for B, we get

Pr(A = a,B = b|X = x, Y = y) =∫
dµ(λ0)P (A = a|X = x,R = λ0)×

P (A = a|X = x,R = λ0),

which has the form required, except with a continuous
latent variable λ0. Due to the finite state space (there
are only 16 possible combinations of a, b, x, y) this can
be written in terms of a discrete latent variable. A
similar argument holds in reverse; given P (AB|XY ) in
terms of a graphical model in Fig. 2, one can construct
a hidden variable and functions A(X,λ), B(Y, λ), that
reproduce the same statistics.

B Strength of influence

What is the minimum amount of influence necessary
to allow latent homophily to be ruled out? We pro-
vide an upper bound for the following special model.
Consider a model of influence between Alice and Bob.
Alice (Bob) may take a state At(Bt) ∈ ±1 at each
time step t = 1, . . . , T . Bob’s state is chosen randomly
so that p(Bt = 1) = 1/2, and Alice is influenced with
probability λ to have the same value at t + 1 as Bob
did at time t, otherwise, Alice’s state is random. We
choose an observable,

O =
1

T − 1

T−1∑
t=1

At+1Bt − 1
T − 2

T−2∑
t=1

BtBt+2. (15)

For this model it is straightforward to derive 〈O〉inf =
λ, regardless of T . However, for an SLH model, it
can be shown with standard algebraic optimization
that for T = 4, 〈O〉SLH ≤ 0.376, while for T = 6,
〈O〉SLH ≤ 0.302. Therefore, if the probability of influ-
ence, λ, and therefore 〈O〉 exceeds these values, latent
homophily can be ruled out as the sole explanation of
the correlations. Interestingly, for a sequence of obser-
vations T < 4, 〈O〉SLH is not bounded (except trivially
by 1). This is only an upper bound on the minimum in-
fluence need because, in principle, one could construct



(e.g., using Eq. 7) an observable, O to rule out latent
homophily for even smaller values of λ.
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