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Abstract 

Filtering-estimating the state of a partially ob­
servable Markov process from a sequence of 
observations-is one of the most widely stud­
ied problems in control theory, AI, and com­
putational statistics. Exact computation of the 
posterior distribution is generally intractable for 
large discrete systems and for nonlinear con­
tinuous systems, so a good deal of effort has 
gone into developing robust approximation algo­
rithms. This paper describes a simple stochas­
tic approximation algorithm for filtering called 
decayed MCMC. The algorithm applies Markov 
chain Monte Carlo sampling to the space of 
state trajectories using a proposal distribution 
that favours flips of more recent state variables. 
The formal analysis of the algorithm involves 
a generalization of standard coupling arguments 
for MCMC convergence. We prove that for 
any ergodic underlying Markov process, the con­
vergence time of decayed MCMC with inverse­
polynomial decay remains bounded as the length 
of the observation sequence grows. We show 
experimentally that decayed MCMC is at least 
competitive with other approximation algorithms 
such as particle filtering. 

1 Introduction 

Let us consider a partially observable Markov process with 
state variable X1 and observation variable Yi. The process 
is described by a transition model P(Xt+liXt), a sensor 
model P(Yi iXt), and a prior P(Xo) (see Figure 1). The 
process is assumed to be stationary-the transition and 
sensor models do not vary with t-and ergodic. At any 
given current timeT, the observations Y1, ... , YT (abbrevi­
ated as y1,r) are available. The basic problem of calculat­
ing P(XriYl'T )-the belief state or distribution over pos­
sible states given the evidence to date-has been studied in 
many guises, as state estimation, filtering, tracking, or situ-
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Figure 1: Unrolled Bayesian network depicting a partially 
observable Markov process. 

ation assessment. We will use the term "filtering," and we 
will concentrate on two aspects: (1) the update computa­
tion needed when a single new observation arrives, and (2) 
the behaviour of the filtering algorithm in the limit of long 
observation sequences (i.e., as T -+ oo ). 

Markov processes come in various flavours: discrete mod­
els such as hidden Markov models (HMMs) and discrete 
dynamic Bayesian networks (DBNs); continuous mod­
els such as Kalman filters; and hybrid models such as 
switching Kalman filters. All of these approaches are ex­
pressible as generalized DBNs with X1 = Xl, . . .  , X[' and 
Yi = Y/ , ... , y;m. Exact update is intractable for several of 
the standard classes-all existing algorithms are 0(2n) for 
discrete DBNs and 0( oo) for switching Kalman filters (i.e., 
the update cost grows without bound as T -+ oo). A va­
riety of approximation algorithms have therefore been sug­
gested, and several will be discussed in Section 2. Particle 
filtering (PF) in particular is a robust and general algorithm 
with many applications [Doucet et al., 200 ll. Four crucial 
features of PF are ( 1) it takes a constant amount of time per 
update, independent ofT (which is essential for any online 
filtering algorithm); (2) by increasing the number of sam­
ples it can approach the true belief state arbitrarily closely; 
(3) it can be applied easily to any standard Markov process 
model; and (4) it is usually non-divergent-i.e., its estima­
tion error remains bounded for large T. There are cases, 
however, where particle filtering diverges. Particle filtering 
also has the drawback that its space requirement is propor­
tional to the number of samples used. 

The main contribution of this paper is a new filtering al­
gorithm called decayed Markov chain Monte Carlo, or de­
cayed MCMC (Section 3). The basic idea is to concentrate 
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the sampling activity of the MCMC algorithm on state vari­
ables in the recent past, since they are more relevant to the 
current state. Decayed MCMC shares the advantages of 
particle filtering but is provably convergent given certain 
standard conditions on the Markov process being observed. 
In Section 4 we develop a generalized form of the standard 
coupling lemma used to analyze convergence of MCMC 
algorithms, and we prove that a particular form of decayed 
MCMC using an inverse polynomial decay converges to 
within an arbitrary E of the true belief state in time that is 
independent of T, the length of the observation sequence. 
This implies that decayed MCMC is non-divergent. In Sec­
tion 5, we demonstrate empirically that our algorithm's per­
formance is comparable to that of PF. We draw our conclu­
sions in Section 6. 

2 Approximate DBN inference methods 

One reason why exact DBN inference is intractable is that 
the running time of BN algorithms is exponential in the 
tree width of the underlying graph. In a DBN, the exist­
ing dependencies will cause this quantity to grow to n as 
the network is unrolled. Boyen and Koller [1998] have 
suggested that this problem can be overcome by, at every 
timestep, ignoring some of the weaker variable interdepen­
decies. This approach has been shown to work very well 
on some DENs. The downside is that picking the depen­
dencies to be ignored is a non-trivial problem, difficult to 
automate. Moreover, once the simplifications have been 
selected, the error is a deterministic function of the graph 
and of the set of observations, so it is not possible to make 
arbitrarily close approximations. 

An alternative method is Loopy Belief Propagation [Mur­
phy and Weiss, 2001]. Here, belief propagation, which 
is a tractable exact algorithm for polytree BNs, is ap­
plied to an arbitrary DBN until convergence. This ap­
proach gives approximate answers, but there are no guar­
antees as to their quality; once again, no arbitrary im­
provement of the approximation is possible. Recent gen­
eralizations of belief propagation [Yedidia et a/., 2001; 
Minka, 2001] do admit of successively more accurate ap­
proximations and may yield a practical filtering algorithm. 

A third deterministic approximation algorithm can be de­
rived using variational techniques, which use the "clos­
est " simplified model that is tractable. The original varia­
tional algorithms were derived for specific families of DBN 
structures, e.g., factorial HMMs [Ghahramani and Jordan, 
1997], and resemble the Boyen-Koller algorithm in that 
they perform well if the variational model is a good fit but 
cannot produce arbitrarily close approximations. 

Particle filtering [Doucet eta/., 200 1], the most widely ap­
plied algorithm, represents the belief state by a set of sam­
ples. The samples are propagated forward at every time 
step, weighted according to the likelihood of the new obser­
vation, and then resampled according to the weights so as 

to move the sample population towards the high-likelihood 
part of the state space. AsS, the number of samples, is in­
creased, the approximation becomes arbitrarily good. For­
mal analysis of convergence has proven quite difficult, and 
the basic algorithm can diverge when the diversity of the 
sample population collapses. 

3 Decayed MCMC 

3.1 MCMC filtering 

MCMC [Gilks et a/., 1996] generates samples from a pos­
terior distribution 1r(x) over possible worlds x by simu­
lating a Markov chain 1 whose states are the worlds x and 
whose stationary distribution is 1r ( x) . Even though the 
samples are not independent, the ergodic theorem guaran­
tees that expectations estimated from the samples converge 
to the right answer as S --t oo. 

For filtering, it would be natural to construct a Markov 
chain such that the posterior distribution 1r(x) is the be­
lief state P(Xrly,,r ). Unfortunately, there is no satisfac­
tory way to define this chain without considering the values 
of X,,T-1 as well, and so the target stationary distribu­
tion 1r will be P(XLrly1,r). This means that the sample 
worlds visited by the computational Markov chain will be 
complete state trajectories over X1,r. The estimated belief 
state P(Xriy1,r) can be extracted easily from the sampled 
trajectories simply by looking at the value of Xr in each 
trajectory. The memory requirements of MCMC filtering 
are therefore independent of the number of samples (and 
therefore, of the required accuracy), unlike particle filter­
ing, since the algorithm can simply accumulate counts for 
each value of Xr (or for particular X} variables that may 
be queried). On the other hand, the MCMC algorithm sam­
ples past states conditioned on their Markov blankets, so 
we must store the history of evidence {yt}. In practice, 
there will be a limit L such that evidence more than L steps 
in the past is forgotten. However, the convergence time of 
the algorithm does not depend on L, and so a pessimistic 
value of L can be used without affecting performance. 

A computational Markov Chain with the appropriate sta­
tionary distribution can be constructed using Gibbs sam­
pling [Pearl, I 988]. Viewing the model as having a single 
state variable Xt, the Gibbs sampling step first chooses t 
and then samples Xt from the distribution conditioned on 
its Markov blanket, 

(With multiple state variables, each state variable Xf is 
sampled conditional on its own Markov blanket.) Gibbs 
sampling is local in that the Markov blanket involves nodes 
in a neighbourhood of Xf; each sampling step takes time 
that is, for bounded fan-in, independent of the model size. 

1This "computational" Markov chain should be distinguished 
from the "physical" Markov chain whose state is being estimated. 
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With Gibbs sampling, the order in which the X1 's are sug­
gested as candidates for change can be fixed. It is also per­
missible to pick variables at random from some distribution 
g(t) over [1 . . .  T], as long as every variable is guaranteed 
to be chosen infinitely often. The algorithm (for the single 
state-variable case) is as follows: 

for s= 1 to S 
choose t from g(t) 

sample X, from P(XtiXt-l, Xt+l, Y,) 

update counts for Xr 

For reasons that will become clear, the choice of the decay 
function g(t) is crucial to the success of MCMC filtering. 

3.2 The decay function 

We are concerned primarily with the mixing time r ( E) of 
the MCMC process, which, roughly speaking, is the num­
ber of samples required before the estimated posterior is 
within an error tolerance E of the true posterior. (A more 
precise definition is given in Section 4.) In most anal­
yses of MCMC, one measures error with respect to the 
posterior over states of the computational Markov process. 
In our case, that would mean P(X,,r[y1,r ), the poste­
rior over trajectories. For filtering, however, we are inter­
ested only in the error with respect to the posterior marginal 
P(Xr[YLT ). Let us consider a number of possible choices 
for the decay function g ( t) and see how the choice affects 
the mixing time. 

Uniform over [1 .. . T]: 
9r(t) = 1/T for 1 :S t :S T, 0 otherwise. 
This is the usual way to apply Gibbs sampling to Bayesian 
networks, with every variable sampled equally often. For 
the posterior marginal error at X T to be less than E, we must 
sample Xr some number of times proportional to some 
increasing function of 1/ E, and the total amount of work 
will beT times larger than this. Therefore, MCMC filtering 
with a uniform decay function fails as T -+ oo, because the 
cost per update grows without bound. 

A uniform decay fails because it spends arbitrary amounts 
of time sampling variables in the far distant past that are 
essentially irrelevant to the current state. More precisely, 
if the "physical" Markov process (conditioned on the evi­
dence) is ergodic, old values of both the observations and 
the states are forgotten exponentially fast with a rate that 
can be bounded by the Birkhoff coefficients of the pro­
cess [Shue et a/., 1998]. Thus, it is helpful to think of a 
physical mixing time Tp for the observed process. 

Uniform over fixed window [(T- W + 1) ... T]: 

gw(t) = 1/W for (T- W + 1) :S t :S T, 0 otherwise. 
Uniform sampling over the recent past has the advantage 
that the marginal at X T will converge in time that depends 
only on the window size W and not on T; it has the dis­
advantage that it converges to the wrong distribution unless 
W is chosen to be much larger than the physical mixing 
time Tp (which is typically unknown). Further, once W has 

been fixed, arbitrary improvements in the accuracy cannot 
be made. Finally, the fixed-window approach spends as 
much time flipping variables at timeT - W + 1 as it does 
variables at time T, which is wasteful. 

Exponential decay: 

913(t) = a13c/3(T-t) for 1 ::; t ::; T, 0 otherwise. 
Since an exponential decay ensures that every t is sam­
pled infinitely often in the limit, convergence to the cor­
rect marginal at X T is guaranteed. If the decay constant 
r9 = 1/ f3 is matched to the physical mixing time Tp, we 
expect reasonably fast convergence because the sampling 
frequency is proportional to "relevance." However, since 
Tp is unknown, there is a danger of setting r9 too large (in 
which case samples in the far past are wasted) or too small 
(in which case the number of samples needed for conver­
gence to the correct marginal grows exponentially in the 
difference Tp - r9 and also with 1/ E). 
Inverse polynomial decay: 
g0(t) = a0(T- t + 1)-(IH) for 1::; t::; T, 0 otherwise. 
Again, we have convergence to the correct marginal in the 
limit. We prove in Section 4 that the inverse polynomial 
decay results in a convergence time that is independent of 
T. Moreover, because the proof does not depend on the 
starting state of the MCMC algorithm, decayed MCMC is 
robust against divergence as T -+ oo. 

4 A mixing time bound 

We now prove a bound on the mixing time of decayed 
MCMC with an inverse polynomial decay g0(t) for dis­
crete DBNs. The bound does not depend on the history 
length. For simplicity, we assume the DBN has one state 
variable and one observation variable (this will not affect 
the asymptotic behaviour of the mixing time). 

4.1 Notation 

We begin by introducing some notation. All discussion of 
mixing times is assumed to be with respect to some pre­
specified E. The total variation distance between two prob­
ability distributions on a set S is defined as 

1 
[[p,- P2ll = 2 L IPt(x)- P2(x)[ 

xES 
The state and observation variables of the DBN take val­
ues in the finite sets X and Y respectively. T will denote 
the length of the evidence sequence. We define the mixing 
parameter 1) of a DBN as the maximum, over all values 
Xt-t,Xt+!,x;_1,x;+, EX and yt E Y. of 

[[P(Xt[Xt-t,Xt+!,Yt)- P(Xt[x;_1,x;+1,Yt)ll 
1) will be part of the constant factor in our mixing time 
analysis, and it summarizes the mixing properties of the 
DBN. For a given evidence sequence y, a tighter "data­
dependent " version of 1) can be used by not maximizing 
over Yt· 
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Our MCMC notation is from Jerrum and Sinclair [1997]. 
The state space of the computational MCMC process is 
fl = xr, the set of all physical trajectories of length T. 

The stationary distribution of MCMC on fl is denoted by 
7r. p; will denote the probability distribution on n result­
ing from starting in state x E n, and running MCMC for 
8 steps. In general, superscripts will refer to the number 
of time steps of MCMC, and subscripts to time steps in 
the DBN, so that X{ is the state of the tth timeslice of the 
DBN after 8 steps of MCMC. (This conflicts slightly with 
the earlier use of superscripts as identifiers of individual 
variables within a timeslice, but we will avoid the latter us­
age in what follows.) .6.'(x) denotes the error-the total 
variation distance between the MCMC distribution at step 
8 and the stationary distribution, i.e., liP: - 1rll- The worst­
case distance for all starting states is .6. 8 = maxx .6. • ( x). 
The mixing time r (E) is then min{81.6.' < c}, i.e., the first 
time at which the worst-case distance is less than E. We 
will often omit the dependence on E, since it is a prespeci­
fied constant. 

We are specifically interested in the Tth timeslice, and so 
define M to be the operator that takes a probability dis­
tribution on n and marginalizes it onto the last coordinate. 
We can then define the marginal error .6.:,_,(x) = IIM(P;)­
M ( 1r) II, and use this to define .6.:,_. and r m (E) as before. 
The marginal mixing time r m is the quantity we want to 
bound. 

4.2 Coupling and Marginal Coupling 

The technique of coupling [Bubley and Dyer, 1997] is 
commonly used in proving bounds on the mixing time of 
MCMC algorithms. The idea is that we consider two in­
stances of the chain, and bound the mixing time of the chain 
in terms of how long the two instances take to come to­
gether. Now, if the two instances were independent, this 
would not be a very useful thing to do because the bound 
would be very loose. However, the power of the method 
is that we may "couple " the two instances together how­
ever we like, by specifying their joint transition matrix, so 
long as their marginal transition behaviour is according to 
the given Markov chain, and the coupling bounds will still 
hold. More precisely, we have the following theorem : 

Theorem 1 (MCMC Coupling Theorem) Given a 
Markov transition matrix K, let {X'} and {X'} be two 
Markov chains such that 

• For each 8, the marginal transitions P(X'+liX') and 

P(.X•+1IX') are given by K 

• x· = x· =} x•+l = .X•+l 

Then the mixing time satisfies r (E) < Sfc, where 

s = ma,x:E(min{8IX' = X'}IX0 =x, X0 = x) . x,x 

We cannot use this theorem directly, because we want to 
bound the marginal mixing time r m rather than the mixing 
time r for the entire sequence. Of course, r m :S r, but 
because r depends on T, this bound is too weak for our 
purposes. Therefore, we prove a modified version of the 
coupling theorem. First, we recall a lemma from probabil­
ity theory. 

Lemma 1 (Coupling Lemma) Let U and V be discrete 
random variables with distributions given by f and g. Then 

1. P[U # V] � II!- Bll 

2. There exists a joint distribution for U and V with 
marginals f and g that allows equality to be achieved 
in the above. 

Now let D:,_, (x, x) be the marginal distance after 8 steps 
between two MCMC processes starting from states x, x, 
i.e., D:r,(x, x) = IIM(P;) - M(PI)II- As before, we 
will be concerned with the worst-case marginal distance: 
D:,.. = maxx,x D:r,(x, x). We can show that this gives an 
upper bound on the marginal error: 

Lemma 2 .6.:,_. :S D:,... 

Proof: Forx E fl, let P0(x) be the probability distribution 
that assigns 1 to x and 0 to anything else. We can then write 
1r as a convex combination I:xHl axP0(x) where ax � 0 
and I:x ax = 1. 

We can view a probability distribution p over n as a vector, 
and the transition kernel of MCMC as a matrix K, so that if 
we apply one step of MCMC to a distribution p, we obtain 
the distribution pK. Since 1r is stationary, 

7r 7r K' 

= 2::>xP0(x)K' = l::>xP: 

Since M is also linear, M(1r) = L:x axM(P;), i.e., 
M ( 1r) is contained in the convex hull of the M ( P;). 

Let x E n, and consider the ball centered at M(PI) with 
radius maxxiiM(PI)- M(P;)II. Since this is convex and 
contains all the M(P;), it must also contain M(1r), and 
so, for any x, 

IIM(P'(x))- M(7r)ll < maxiiM(P'(x))-M(P'(x))ll 
X 

< n:,.. 

The claim follows by taking a maximum over x. • 

We will use these lemmas to prove a marginal version of 
Theorem I. Essentially, instead of looking at the time it 
takes until X s = X 8, we just look at how long it takes until 
they agree on their Tth coordinate, i.e., Xf =X f. Now, 
we can no longer require that the chains stay together once 
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they come together on the Tth coordinate, because that 
would violate the requirement that each chain's dynamics 
mirror the specified Markov chain. However, we can still 
get a bound on total variation distance after S steps. In our 
applications, this bound will be a non-increasing function 
of S, and so we get a bound on T m as well. 

Theorem 2 (Marginal Coupling Theorem) For a given 
transition matrix K on n, let {X5} and {X•} be Markov 

chains such that for all s, P (X'+1IX•) and P (x•+1 IX•) 
are given by K. Then 

.6.5 < ma.xP[X5 -I. x· IX0 =x X0 =x] m- _ Tl T ' x,x 

Proof: By Lemma 2, .6.� ::; D�. Since {X•} and {X'} 
both evolve marginally according to K, D� (x, x) equals 

IIP (X5I(X0' X0) = (x, x))- P (X51(X0, X0) = (x, x))ll 
We can now apply part I of Lemma I to finish the proof. • 

Another useful extension of the coupling framework is 
multiple-step coupling. Suppose we have a Markov chain 
with dynamics given by the transition matrix K, and we 
want to show that the mixing time is less than S. To use 
the coupling theorem directly requires finding a coupling 
on a single step of K which brings two instances together 
in S steps with high probability. Sometimes, however, it 
is simpler to consider the S -step dynamics with transition 
matrix K s, and find a coupling for this new dynamics that 
brings two instances together in 1 step with high probabil­
ity. Since both K and K5 have the same stationary distri­
bution, the existence of such a coupling would also imply 
that K mixes in S steps. This idea extends to marginal cou­
pling, resulting in the following corollary to Theorem 2. 

Corollary 1 Let K be a transition matrix on n, and S > 0. 
Suppose we can construct a coupling (X, X) --+ (X5, X5) 
such that P (X5IX) and P (X5IX) are both given by K5, 
and P (Xf. f X f. IX= x, X= x) < € Vx, X. Then the 
marginal mixing time of K satisfies Tm(t) < S. 

4.3 The decayed window dynamics 

Suppose that we have a polynomial decay function g.s(t) 
but modify the Gibbs sampling algorithm so that it does 
nothing whenever g.s chooses a time t < T - W + 1 for 
some fixed W. We call this the decayed window dynam­
ics; its transition kernel is K.s,w. Since it ignores evidence 
before T - W + 1, its stationary distribution 7IW will not 
in general equal 1r. In this section, we will find a bound on 
the mixing time of the decayed window dynamics which 
depends on W but not T. This result will then be used to 
bound the mixing time of decayed MCMC. 

Given a matrix K and vector ¢, define the Dirichlet Form 

1 
EK,cp(f, f) = 2 2)J(x) - j(x))2 K (x, x)¢(x) 

x,X 

Let F¢ be the family of nonnegative real-valued functions 
on n such that l:x ¢(x)f2(x) = 1. For j E F¢. define 
the entropy Hq,(f2) = l:x ¢(x)j2(x) log j2(x). Finally, 
define the logarithmic Sobolev constant by 

c (K ¢) = inf EK,cp(f,J) 
s , /EF. Hcp(j2) 

The logarithmic Sobolev constant provides a bound on the 
mixing time, via the following theorem2 [Diaconis and 
Saloff-Coste, 1996], [Randall and Tetali, 2000]. 

Theorem 3 For a Markov chain with transition kernel K 
and stationary distribution 1r, with 1r* =minx 1r (x), 

r(t) < c_;-1 (K, 1r) log(log(1/7r*)) log (1/t) 

Define a matrix K unif w as follows : if x, x differ 
only at the tth times

,
! ice for some t > T - W, 

then Kunir,w(x,x) =P (Xt =xtiXmb(t) =xmb(t)); other­
wise, Kunif,w (x,x) =0. In statistical physics, Kunif,W is 
an example of a generator of the Glauber dynamics of a 
lattice spin system. Its log Sobolev constant is bounded as 
follows: [Martinelli, 1999 P 

Theorem 4 c5(Kunif,W,7rw) 2: C1(17) > 0 where C1(17) 
is independent ofT. 

Kunif,W is closely related to K.s,w, and we can use Theo­
rem 4 to bound the mixing time of Ko,W· 

Theorem 5 Given a DBN with mixing parameter1), the de­
cayed window dynamics with window size W and a poly­
nomial decay function g.s mixes to within t/6 of 1rw in 
C2(7), 5)W1+" log(W) log(1/c)) steps where C2(1), 5) is 
independent ofT. 

Proof: Since min{t>T-W} g.s(t) = g.s(T- W + 1), the 
Dirichlet forms of Kunif,W and Ko,w satisfy the inequality 

EK,,w,Trw(f,j) 2: g.s(T- W + 1)£K'"if,w,Trw(J,J) 

£ is the only thing in the definition of c, which depends on 
K. So, byTheorem4, 

c_;-1(K.s,w,7rw) ::0 gi1(T- W + 1)c_;-1(Kunif,W,7rw) 
= O(w1+"c;-1(17)) 

Also, 1rw > C:JW for some constant C3, and so 
log(log(1/7rw )) = O(log(W)). Plugging all this into 
Theorem 3 gives the desired bound. • 

This bound on the mixing time implies the existence of a 
multiple-step coupling that makes two instances of the de­
cayed window dynamics come together quickly: 

2This bound is similar to classical bounds based on the 
eigengap of K, the main difference being that we have a term 
log(log(l/1r')) instead of log(l/7r' ), which turns out to be a cru­
cial improvement 

3 See Theorem 4.6 of this reference, but note that the definition 
of Cs used there is the inverse of our definition 
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Corollary2 ForS 2': C2(7))W1H]og(W) log(1/E), there 
exists a coupling (X, X) ---t (X5, X5) such that if 
P (X5IX) and P (X5IX) are given by Kf,w, then 

Vx, x P (X5 -1- X5IX = x, X= x) :<::: E/3. 

Proof: By Theorem 5, the distributions P (X5IX =x) 
and P (X5IX=x) are within E/6 of·nw. Therefore, by 
the triangle inequality, they are within E/3 of each other. 
By part 2 of Lemma 1, we can couple the chains so that 
they are equal with probability at least 1 -E/3. • 

4.4 Constructing a coupling 

Let K0 denote the decayed MCMC dynamics with in­
verse polynomial decay 9o(i). We want to bound the 
mixing time using Corollary 1. To do this, we need to 
find a constant S, and, for all x, x E !1, a coupling 
P (X5, X51X = x, X= x) with the appropriate marginals, 
such that P (Xf =X fiX = x, X =  x) > 1-E. 

Our strategy will be to couple the evolution X ---t X 5 to 
an instance of the decayed window dynamics X ---t X* 
with P (X*IX) given by Kf,w, and similarly couple the 

evolution X ---t X5 to X ---t X*. By the results of the 
previous section, we can choose S = O(W1H log(W)), 
then X* and X* can be coupled so that they are equal 
with high probability. However, we will also need to make 
sure (in Lemma 3), that with high probability, Xf and 
Xr do not become different (and similarly for Xf and 
Xr ). This will allow us to conclude, in Theorem 6, that 
Xf = Xr = Xr = Xf where S is constant (because W 
will be chosen independently of T). 

Lemma 3 If S = O(W1H log(W)), then for sufficiently 
large W, there is a conditional distribution P (X5, X*IX) 
such that P (X51X) is given by Kf, P (X*IX) is given by 
Kfw· and, Vx P (Xy -/-X fiX= x) < E/3. 

Proof: Let X'(0) = X*(o) =X. For s 2': 1 pick 
i8 according to the distribution 98. If is > T -
W, X'(•-1) = x•(s-1), and X'(•+1) = X*(•+1l, then 

(X lxt(s-1) x'(s-1) ) d l sample x1, from P t, t,-1 , t,+1 , Yt, an et 

x;(s) = x;(s) = Xt . If, instead, is :<::: T- W, then only , ,(s) . 
, . 

T W b X'(s-1) ...t. 
change xt . Fmally, If is > - ut mb(t,) r 
x;�(�\), generate x;�s) and x;,(s) independently. Set 

X5 = X'(S) and X* = x•(S). 

Let So be the first time such that is0 = T -W, and for 
j > 0, let Si be the first time after Si-1 such that 
is; = T - W + j. Initially, X'(o) = X*(o), and so, by 
definition of our coupling, the only way it could happen 
that x�S) -1- x;(S) is that Sw :<::: S. Intuitively, for a 
"disagreement" to reach timestep T, it has to start before 
T - W and "percolate" towards T, one step at a time. 

Each Si -Si _1 is a geometric variable with parameter 
9(T-W+j)=a0(W+1-j)-1-8, and so 

w 
E (Sw - So) = L E(Sj -Si-d 

j=1 
w 

CXo L j1+8 
ex W2+8 

j=1 

But by assumption, S = O(W1H log(W)) « 
O(W2H) = E(Sw - S0). So, for large enough W, 
by a Chernoff bound, it happens with probability greater 
than 1 -E/3 that Sw 2': Sw -S0 2': S, in which case 
Xf =Xy. • 

Combining the couplings from Corollary 2 and Lemma 3, 

Theorem 6 For a DBN with mixing parameter 7), there ex­
ists S such that for all T and all evidence sequences of 
length T, the decayed MCMC algorithm with polynomial 
decay 98 mixes in at most S steps. 

Proof: Let E > 0, and x, x E !1. Pick W large 
enough that the conclusion of Lemma 3 holds with 
S = C2(77)W1H log(W) log(1/E), so there is a distri­
bution P0 (X5,X*IX=x) such that P0 (X5IX=x) 
is given by Kf, P0 (X*IX=x) is given by Kf,w, 
and P8 (Xf = XriX = x) > 1 - E/3. Next, 
by Corollary 2, there exists a joint distribution 
Pw8 (X*,X*IX =x,X=x) having the same marginal 
on X* as P8, such that Pw,o(X* =X*IX=x,X=x) 2': 
1 - E/3. Since we have already generated X*, we 
can generate X* from the conditional distribution 
Pw,o(X*IX = x, X= x, X*). Finally, by Lemma 3, there 
is a joint distribution F0 (X*,X5IX =x) with the correct 
marginals, such that F0 (Xr=XfiX=x) > 1 - E/3, 
and we generate X5 from F0 (X5IX = x, X*). We have 
specified a distribution P (X5,X*,X5,X*IX,X) and, 
by a union bound, P (Xf -1- X fiX= x, X =  x) < €. Now 
marginalize out X* and X*, and apply Corollary 1 to get 
the desired mixing time bound. • 

5 Empirical analysis 

We now give some experimental results, on both synthetic 
and real-world example DENs, performed using Kevin 
Murphy's toolbox [Murphy, 200 !]. We first look at some 
simple, artificial DENs. The advantages of doing this are 
that we can compute the exact posterior and therefore the 
error of our algorithm, and also that it is easy to precisely 
control the mixing parameter of such DENs. In general, 
the performance of Monte Carlo approximation algorithms 
depends not so much on the complexity of the underlying 
graph as on the determinism in the transition model. So we 
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Figure 2: Mixing time (E = .05) as a function of history 
length. 
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Figure 3: Error as a function of number of samples for an 
HMM with slow mixing parameter. 
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Figure 4: Error as a function of number of samples for an 
HMM with fast mixing parameter. 
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Figure 5: Error as a function of time for the WATER DBN, 
using 1000 samples. 
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Figure 6: Error versus time for a Switching Kalman Filter, 
for Decayed MCMC with quadratic decay using 500 sam­
ples with gap 3, and Particle Filter with 500 particles. 

expect that the qualitative behaviour that we observe here 
will carry over to larger models. 

We begin by performing an experiment to verify our the­
orems on bounded convergence. Figure 2 shows mixing 
time (for a quadratic decay) as a function of history length 
for various DBNs with E = .05. As can be seen, the mix­
ing time depends strongly on the mixing parameter of the 
DBN. Determinism in the transition model increases the 
mixing time, while determinism in the observation model 
decreases it (since the increasing importance of the obser­
vations means that history becomes less relevant). How­
ever, for given transition and observation models, the mix­
ing time remains bounded as the history length increases. 

The second experiment demonstrates the convergence of 
the various decay functions for DBNs with different mix­
ing parameters. Figures 3 and 4 show error as a function of 
number of samples, for two different HMMs with fixed his-
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tory length 1000. The first point is that the fixed-window 
error converges very fast, but not to 0, since it ignores his­
tory beyond a certain point. In Figure 3, which is an HMM 
with a slow mixing parameter, the fast exponential decay 
does well initially, but then the rate of convergence slows 
because the decay function rarely samples beyond a cer­
tain point. The slow exponential decay performs better on 
this example. On the other hand, in Figure 4, the situation 
is reversed, and the fast exponential outperforms the slow 
one, because in this case it is a better match for the forget­
ting rate of the DBN. The quadratic decay is more robust, 
performing well for both HMMs. 

We next consider a larger DBN - the WATER network 
[Jensen et al., 1989], used for monitoring a water purifi­
cation plant. Figure 5 shows error as a function of history 
length, using 1000 samples. Undecayed MCMC shows the 
expected increase in error, as the samples are forced to 
cover more ground. Among the other algorithms, fixed­
window MCMC does slightly worse than the other two, 
because it ignores history beyond a certain point. Particle 
filtering and MCMC with a quadratic decay have almost 
identical performance. The error of decayed MCMC re­
mains bounded, as suggested by our theoretical results. 

Finally, we consider an example with continuous state for 
which exact inference is intractable, namely a switching 
Kalman filter. It consists of a switch variable St 

taking 
finitely many values, a continuous state variable X

t 
= 

X
t-1 +St+Vt, and observation Yi = X

t+Wt
. wherevt and 

W
t 

are Gaussian. This can model, for example, noisy obser­
vations of the position of a maneuvering object. Figure 6 
shows error (measured as the distance between the mean of 
the samples to the true value) versus history length. 

6 Conclusions 

We have described a simple approximate filtering algo­
rithm called decayed MCMC. Experimentally, it has per­
formance comparable to other filtering algorithms. Also, 
being an MCMC algorithm, it is amenable to theoretical 
analysis, and we have shown that it comes with strong con­
vergence guarantees. 

Directions for future work include generalizing the conver­
gence proofs to continuous state spaces and improving the 
algorithm using parallel chains. Another interesting possi­
bility is to choose the number of samples adaptively based 
on recent evidence- an option not available with sequential 
methods. 
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