Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details         Authors         Search    
Proceedings of the Twenty-Seventh Conference Conference on Uncertainty in Artificial Intelligence ( 2011 )
July 14- 17 2011, Barcelona, Spain

Edited By:
Fabio Cozman, Avi Pfeffer
Published By: AUAI Press, Corvallis, Oregon
ISBN: 978-0-9749039-7-2

A Framework for Optimizing Paper Matching
Laurent Charlin , Richard Zemel , Craig Boutilier
A Geometric Traversal Algorithm for Reward-Uncertain MDPs
Eunsoo Oh , Kee-Eung Kim
A Logical Characterization of Constraint-Based Causal Discovery
Tom Claassen , Tom Heskes
A Sequence of Relaxation Constraining Hidden Variable Models
Greg Ver Steeg , Aram Galstyan
A temporally abstracted Viterbi algorithm
Shaunak Chatterjee , Stuart Russell
A Unifying Framework for Linearly Solvable Control
Krishnamurthy Dvijotham , Emanuel Todorov
Active Diagnosis via AUC Maximization: An Efficient Approach for Multiple Fault Identification in Large Scale, Noisy Networks
Gowtham Bellala , Jason Stanley , Clayton Scott , Suresh Bhavnani
Active Learning for Developing Personalized Treatment
Kun Deng , Joelle Pineau , Susan Murphy
Active Semi-Supervised Learning using Submodular Functions
Andrew Guillory , Jeff Bilmes
Adjustment Criteria in Causal Diagrams: An Algorithmic Perspective
Johannes Textor , Maciej Liskiewicz
An Efficient Algorithm for Computing Interventional Distributions in Latent Variable Causal Models
Ilya Shpitser , Thomas Richardson , James Robins
An Efficient Protocol for Negotiation over Combinatorial Domains with Incomplete Information
Minyi Li , Quoc Bao Vo , Ryszard Kowalczyk
Approximation by Quantization
Vibhav Gogate , Pedro Domingos
Asymptotic Efficiency of Deterministic Estimators for Discrete Energy-Based Models: Ratio Matching and Pseudolikelihood
Benjamin Marlin , Nando de Freitas
Bayesian network learning with cutting planes
James Cussens
Belief change with noisy sensing in the situation calculus
Jianbing Ma , Weiru Liu , Paul Miller
Belief Propagation by Message Passing in Junction Trees: Computing Each Message Faster Using GPU Parallelization
Lu Zheng , Ole Mengshoel , Jike Chong
Boosting as a Product of Experts
Narayanan Edakunni , Gary Brown , Tim Kovacs
Bregman divergence as general framework to estimate unnormalized statistical models
Michael Gutmann , Jun-ichiro Hirayama
Characterization and Greedy Learning of Interventional Markov Equivalence Classes of Directed Acyclic Graphs (Abstract)
Alain Hauser , Peter Buhlmann
Classification of Sets using Restricted Boltzmann Machines
Jerome Louradour , Hugo Larochelle
Compact Mathematical Programs For DEC-MDPs With Structured Agent Interactions
Hala Mostafa , Victor Lesser
Compressed Inference for Probabilistic Sequential Models
Gungor Polatkan , Oncel Tuzel
Conditional Restricted Boltzmann Machines for Structured Output Prediction
Volodymyr Mnih , Hugo Larochelle , Geoffrey Hinton
Correction for Hidden Confounders in the Genetic Analysis of Gene Expression
Jennifer Listgarden , Carl Kadie , Eric Schadt , David Heckerman
Deconvolution of mixing time series on a graph
Alexander Blocker , Edoardo Airoldi
Detecting low-complexity unobserved causes
Dominik Janzing , Eleni Sgouritsa , Oliver Stegle , Jonas Peters , Bernhard Schoelkopf
Discovering causal structures in binary exclusive-or skew acyclic models
Takanori Inazumi , Takashi Washio , Shohei Shimizu , Joe Suzuki , Akihiro Yamamoto , Yoshinobu Kawahara
Distributed Anytime MAP Inference
Joop van de Ven , Fabio Ramos
Dynamic consistency and decision making under vacuous belief
Phan Giang
Dynamic Mechanism Design for Markets with Strategic Resources
Swaprava Nath , Onno Zoeter , Yadati Narahari , Christopher Dance
EDML: A Method for Learning Parameters in Bayesian Networks
Arthur Choi , Khaled Refaat , Adnan Darwiche
Efficient Inference in Markov Control Problems
Thomas Furmston , David Barber
Efficient Optimal Learning for Contextual Bandits
Miroslav Dudik , Daniel Hsu , Satyen Kale , Nikos Karampatziakis , John Langford , Lev Reyzin , Tong Zhang
Efficient Probabilistic Inference with Partial Ranking Queries
Jonathan Huang , Ashish Kapoor , Carlos Guestrin
Ensembles of Kernel Predictors
Corinna Cortes , Mehryar Mohri , Afshin Rostamizadeh
Extended Lifted Inference with Joint Formulas
Udi Apsel , Ronen Brafman
Factored Filtering of Continuous-Time Systems
E. Celikkaya , Christian Shelton , William Lam
Fast MCMC sampling for Markov jump processes and continuous time Bayesian networks
Vinayak Rao , Yee Whye Teh
Filtered Fictitious Play for Perturbed Observation Potential Games and Decentralised POMDPs
Archie Chapman , Simon Williamson , Nicholas Jennings
Fractional Moments on Bandit Problems
Ananda Narayanan B , Balaraman Ravindran
Generalised Wishart Processes
Andrew Wilson , Zoubin Ghahramani
Generalized Fast Approximate Energy Minimization via Graph Cuts: a-Expansion b-Shrink Moves
Mark Schmidt , Karteek Alahari
Generalized Fisher Score for Feature Selection
Quanquan Gu , Zhenhui Li , Jiawei Han
Graph Cuts is a Max-Product Algorithm
Daniel Tarlow , Inmar Givoni , Richard Zemel , Brendan Frey
Graphical Models for Bandit Problems
Kareem Amin , Michael Kearns , Umar Syed
Hierarchical Affinity Propagation
Inmar Givoni , Clement Chung , Brendan Frey
Hierarchical Maximum Margin Learning for Multi-Class Classification
Jian-Bo Yang , Ivor Tsang
Identifiability of Causal Graphs using Functional Models
Jonas Peters , Joris Mooij , Dominik Janzing , Bernhard Schoelkopf
Improving the Scalability of Optimal Bayesian Network Learning with External-Memory Frontier Breadth-First Branch and Bound Search
Brandon Malone , Changhe Yuan , Eric Hansen , Susan Bridges
Incentives in Group Decision-Making With Uncertainty and Subjective Beliefs
Ruggiero Cavallo
Inference in Probabilistic Logic Programs using Weighted CNF's
Daan Fierens , Guy Van den Broeck , Ingo Thon , Bernd Gutmann , Luc De Raedt
Iterated risk measures for risk-sensitive Markov decision processes with discounted cost
Takayuki Osogami
Kernel-based Conditional Independence Test and Application in Causal Discovery
Kun Zhang , Jonas Peters , Dominik Janzing , Bernhard Schoelkopf
Learning Determinantal Point Processes
Alex Kulesza , Ben Taskar
Learning high-dimensional DAGs with latent and selection variables
Diego Colombo , Marloes Maathuis , Markus Kalisch , Thomas Richardson
Learning is planning: near Bayes-optimal reinforcement learning via Monte-Carlo tree search
John Asmuth , Michael Littman
Learning mixed graphical models from data with p larger than n
Inma Tur , Robert Castelo
Learning with Missing Features
Afshin Rostamizadeh , Alekh Agarwal , Peter Bartlett
Lipschitz Parametrization of Probabilistic Graphical Models
Jean Honorio
Measuring the Hardness of Stochastic Sampling on Bayesian Networks with Deterministic Causalities: the k-Test
Haohai Yu , Robert van Engelen
Message-Passing Algorithms for Quadratic Programming Formulations of MAP Estimation
Akshat Kumar , Shlomo Zilberstein
Modeling Social Networks with Node Attributes using the Multiplicative Attribute Graph Model
Myunghwan Kim , Jure Leskovec
Multidimensional counting grids: Inferring word order from disordered bags of words
Nebojsa Jojic , Alessandro Perina
Near-Optimal Target Learning With Stochastic Binary Signals
Mithun Chakraborty , Sanmay Das , Malik Magdon-Ismail
New Probabilistic Bounds on Eigenvalues and Eigenvectors of Random Kernel Matrices
Nima Reyhani , Hideitsu Hino , Ricardo Vigario
Noisy Search with Comparative Feedback
Shiau Lim , Peter Auer
Noisy-OR Models with Latent Confounding
Antti Hyttinen , Frederick Eberhardt , Patrik Hoyer
Nonparametric Divergence Estimation with Applications to Machine Learning on Distributions
Barnabas Poczos , Liang Xiong , Jeff Schneider
On the Complexity of Decision Making in Possibilistic Decision Trees
Helene Fargier , Nahla Ben Amor , Wided Guezguez
Online Importance Weight Aware Updates
Nikos Karampatziakis , John Langford
Order-of-Magnitude Influence Diagrams
Radu Marinescu , Nic Wilson
PAC-Bayesian Policy Evaluation for Reinforcement Learning
Mahdi Fard , Joelle Pineau , Csaba Szepesvari
Partial Order MCMC for Structure Discovery in Bayesian Networks
Teppo Niinimaki , Pekka Parviainen , Mikko Koivisto
Pitman-Yor Diffusion Trees
David Knowles , Zoubin Ghahramani
Planar Cycle Covering Graphs
Julian Yarkony , Alexander Ihler , Charless Fowlkes
Portfolio Allocation for Bayesian Optimization
Matthew Hoffman , Eric Brochu , Nando de Freitas
Price Updating in Combinatorial Prediction Markets with Bayesian Networks
David Pennock , Lirong Xia
Probabilistic Theorem Proving
Vibhav Gogate , Pedro Domingos
Rank/Norm Regularization with Closed-Form Solutions: Application to Subspace Clustering
Yao-Liang Yu , Dale Schuurmans
Reasoning about RoboCup Soccer Narratives
Hannaneh Hajishirzi , Julia Hockenmaier , Erik Mueller , Eyal Amir
Reconstructing Pompeian Households
David Mimno
Risk Bounds for Infinitely Divisible Distribution
Chao Zhang , Dacheng Tao
Robust learning Bayesian networks for prior belief
Maomi Ueno
Semi-supervised Learning with Density Based Distances
Avleen Bijral , Nathan Ratliff , Nathan Srebro
Sequential Inference for Latent Force Models
Jouni Hartikainen , Simo Sarkka
Smoothing Multivariate Performance Measures
Xinhua Zhang , Ankan Saha , S. Vishwanatan
Smoothing Proximal Gradient Method for General Structured Sparse Learning
Xi Chen , Qihang Lin , Seyoung Kim , Jaime Carbonell , Eric Xing
Solving Cooperative Reliability Games
Yoram Bachrach , Reshef Meir , Michal Feldman , Moshe Tennenholtz
Sparse matrix-variate Gaussian process blockmodels for network modeling
Feng Yan , Zenglin Xu , Yuan (Alan) Qi
Sparse Topical Coding
Jun Zhu , Eric Xing
Statistical Mechanics of Semi-Supervised Clustering in Sparse Graphs
Greg Ver Steeg , Aram Galstyan , Armen Allahveryan
Strictly Proper Mechanisms with Cooperating Players
SangIn Chun , Ross Shachter
Suboptimality Bounds for Stochastic Shortest Path Problems
Eric Hansen
Sum-Product Networks: A New Deep Architecture
Hoifung Poon , Pedro Domingos
Symbolic Dynamic Programming for Discrete and Continuous State MDPs
Scott Sanner , Karina Valdivia Delgado , Leliane Nunes de Barros
Testing whether linear equations are causal: A free probability theory approach
Jakob Zscheischler , Dominik Janzing , Kun Zhang
The Structure of Signals: Causal Interdependence Models for Games of Incomplete Information
Michael Wellman , Lu Hong , Scott Page
Tightening MRF Relaxations with Planar Subproblems
Julian Yarkony , Ragib Morshed , Alexander Ihler , Charless Fowlkes
Variational Algorithms for Marginal MAP
Qiang Liu , Alexander Ihler
What Cannot be Learned with Bethe Approximations
Uri Heinemann , Amir Globerson

hosted by DSL   •   site info   •   help