Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings         Authors   Author's Info   Article details         Search    
Backward Simulation in Bayesian Networks
Robert Fung, Brendan del Favero
Abstract:
Backward simulation is an approximate inference technique for Bayesian belief networks. It differs from existing simulation methods in that it starts simulation from the known evidence and works backward (i.e., contrary to the direction of the arcs). The technique's focus on the evidence leads to improved convergence in situations where the posterior beliefs are dominated by the evidence rather than by the prior probabilities. Since this class of situations is large, the technique may make practical the application of approximate inference in Bayesian belief networks to many real-world problems.
Keywords:
Pages: 227-234
PS Link:
PDF Link: /papers/94/p227-fung.pdf
BibTex:
@INPROCEEDINGS{Fung94,
AUTHOR = "Robert Fung and Brendan del Favero",
TITLE = "Backward Simulation in Bayesian Networks",
BOOKTITLE = "Proceedings of the Tenth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-94)",
PUBLISHER = "Morgan Kaufmann",
ADDRESS = "San Francisco, CA",
YEAR = "1994",
PAGES = "227--234"
}


hosted by DSL   •   site info   •   help