Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings         Authors   Author's Info   Article details         Search    
Mixture Representations for Inference and Learning in Boltzmann Machines
Neil Lawrence, Christopher Bishop, Michael Jordan
Abstract:
Boltzmann machines are undirected graphical models with two-state stochastic variables, in which the logarithms of the clique potentials are quadratic functions of the node states. They have been widely studied in the neural computing literature, although their practical applicability has been limited by the difficulty of finding an effective learning algorithm. One well-established approach, known as mean field theory, represents the stochastic distribution using a factorized approximation. However, the corresponding learning algorithm often fails to find a good solution. We conjecture that this is due to the implicit uni-modality of the mean field approximation which is therefore unable to capture multi-modality in the true distribution. In this paper we use variational methods to approximate the stochastic distribution using multi-modal mixtures of factorized distributions. We present results for both inference and learning to demonstrate the effectiveness of this approach.
Keywords: Variational inference, Boltzmann machines, undirected graphs.
Pages: 320-327
PS Link: http://www.cl.cam.ac.uk/users/ndl21/boltzmann.ps
PDF Link: /papers/98/p320-lawrence.pdf
BibTex:
@INPROCEEDINGS{Lawrence98,
AUTHOR = "Neil Lawrence and Christopher Bishop and Michael Jordan",
TITLE = "Mixture Representations for Inference and Learning in Boltzmann Machines",
BOOKTITLE = "Proceedings of the Fourteenth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-98)",
PUBLISHER = "Morgan Kaufmann",
ADDRESS = "San Francisco, CA",
YEAR = "1998",
PAGES = "320--327"
}


hosted by DSL   •   site info   •   help