Bayesian Networks from the Point of View of Chain Graphs
Milan Studeny
Abstract:
AThe paper gives a few arguments in favour of the use of chain graphs for description of probabilistic conditional independence structures. Every Bayesian network model can be equivalently introduced by means of a factorization formula with respect to a chain graph which is Markov equivalent to the Bayesian network. A graphical characterization of such graphs is given. The class of equivalent graphs can be represented by a distinguished graph which is called the largest chain graph. The factorization formula with respect to the largest chain graph is a basis of a proposal of how to represent the corresponding (discrete) probability distribution in a computer (i.e. parametrize it). This way does not depend on the choice of a particular Bayesian network from the class of equivalent networks and seems to be the most efficient way from the point of view of memory demands. A separation criterion for reading independency statements from a chain graph is formulated in a simpler way. It resembles the wellknown dseparation criterion for Bayesian networks and can be implemented locally.
Keywords: Bayesian network, chain graph, Markov equivalence, factorization formula.
Pages: 496503
PS Link:
PDF Link: /papers/98/p496studeny.pdf
BibTex:
@INPROCEEDINGS{Studeny98,
AUTHOR = "Milan Studeny
",
TITLE = "Bayesian Networks from the Point of View of Chain Graphs",
BOOKTITLE = "Proceedings of the Fourteenth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI98)",
PUBLISHER = "Morgan Kaufmann",
ADDRESS = "San Francisco, CA",
YEAR = "1998",
PAGES = "496503"
}

