Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings         Authors   Author's Info   Article details         Search    
Price Updating in Combinatorial Prediction Markets with Bayesian Networks
David Pennock, Lirong Xia
To overcome the #P-hardness of computing/updating prices in logarithm market scoring rule-based (LMSR-based) combinatorial prediction markets, Chen et al. [5] recently used a simple Bayesian network to represent the prices of securities in combinatorial predictionmarkets for tournaments, and showed that two types of popular securities are structure preserving. In this paper, we significantly extend this idea by employing Bayesian networks in general combinatorial prediction markets. We reveal a very natural connection between LMSR-based combinatorial prediction markets and probabilistic belief aggregation,which leads to a complete characterization of all structure preserving securities for decomposable network structures. Notably, the main results by Chen et al. [5] are corollaries of our characterization. We then prove that in order for a very basic set of securities to be structure preserving, the graph of the Bayesian network must be decomposable. We also discuss some approximation techniques for securities that are not structure preserving.
Pages: 581-588
PS Link:
PDF Link: /papers/11/p581-pennock.pdf
AUTHOR = "David Pennock and Lirong Xia",
TITLE = "Price Updating in Combinatorial Prediction Markets with Bayesian Networks",
BOOKTITLE = "Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11)",
ADDRESS = "Corvallis, Oregon",
YEAR = "2011",
PAGES = "581--588"

hosted by DSL   •   site info   •   help