Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings         Authors   Author's Info   Article details         Search    
Improved Memory-Bounded Dynamic Programming for Decentralized POMDPs
Sven Seuken, Shlomo Zilberstein
Abstract:
Memory-Bounded Dynamic Programming (MBDP) has proved extremely effective in solving decentralized POMDPs with large horizons. We generalize the algorithm and improve its scalability by reducing the complexity with respect to the number of observations from exponential to polynomial. We derive error bounds on solution quality with respect to this new approximation and analyze the convergence behavior. To evaluate the effectiveness of the improvements, we introduce a new, larger benchmark problem. Experimental results show that despite the high complexity of decentralized POMDPs, scalable solution techniques such as MBDP perform surprisingly well.
Keywords:
Pages: 344-351
PS Link:
PDF Link: /papers/07/p344-seuken.pdf
BibTex:
@INPROCEEDINGS{Seuken07,
AUTHOR = "Sven Seuken and Shlomo Zilberstein",
TITLE = "Improved Memory-Bounded Dynamic Programming for Decentralized POMDPs",
BOOKTITLE = "Proceedings of the Twenty-Third Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-07)",
PUBLISHER = "AUAI Press",
ADDRESS = "Corvallis, Oregon",
YEAR = "2007",
PAGES = "344--351"
}


hosted by DSL   •   site info   •   help