Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings         Authors   Author's Info   Article details         Search    
Robust Graphical Modeling with t-Distributions
Michael Finegold, Mathias Drton
Abstract:
Graphical Gaussian models have proven to be useful tools for exploring network structures based on multivariate data. Applications to studies of gene expression have generated substantial interest in these models, and resulting recent progress includes the development of fitting methodology involving penalization of the likelihood function. In this paper we advocate the use of the multivariate t and related distributions for more robust inference of graphs. In particular, we demonstrate that penalized likelihood inference combined with an application of the EM algorithm provides a simple and computationally efficient approach to model selection in the t-distribution case.
Keywords: null
Pages: 169-176
PS Link:
PDF Link: /papers/09/p169-finegold.pdf
BibTex:
@INPROCEEDINGS{Finegold09,
AUTHOR = "Michael Finegold and Mathias Drton",
TITLE = "Robust Graphical Modeling with t-Distributions",
BOOKTITLE = "Proceedings of the Twenty-Fifth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-09)",
PUBLISHER = "AUAI Press",
ADDRESS = "Corvallis, Oregon",
YEAR = "2009",
PAGES = "169--176"
}


hosted by DSL   •   site info   •   help