Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings         Authors   Author's Info   Article details         Search    
Learning Hidden Markov Models for Regression using Path Aggregation
Keith Noto, Mark Craven
Abstract:
We consider the task of learning mappings from sequential data to real-valued responses. We present and evaluate an approach to learning a type of hidden Markov model (HMM) for regression. The learning process involves inferring the structure and parameters of a conventional HMM, while simultaneously learning a regression model that maps features that characterize paths through the model to continuous responses. Our results, in both synthetic and biological domains, demonstrate the value of jointly learning the two components of our approach.
Keywords:
Pages: 444-451
PS Link:
PDF Link: /papers/08/p444-noto.pdf
BibTex:
@INPROCEEDINGS{Noto08,
AUTHOR = "Keith Noto and Mark Craven",
TITLE = "Learning Hidden Markov Models for Regression using Path Aggregation",
BOOKTITLE = "Proceedings of the Twenty-Fourth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-08)",
PUBLISHER = "AUAI Press",
ADDRESS = "Corvallis, Oregon",
YEAR = "2008",
PAGES = "444--451"
}


hosted by DSL   •   site info   •   help