Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings         Authors   Author's Info   Article details         Search    
Practically Perfect
Christopher Meek, David Chickering
The property of perfectness plays an important role in the theory of Bayesian networks. First, the existence of perfect distributions for arbitrary sets of variables and directed acyclic graphs implies that various methods for reading independence from the structure of the graph (e.g., Pearl, 1988; Lauritzen, Dawid, Larsen & Leimer, 1990) are complete. Second, the asymptotic reliability of various search methods is guaranteed under the assumption that the generating distribution is perfect (e.g., Spirtes, Glymour & Scheines, 2000; Chickering & Meek, 2002). We provide a lower-bound on the probability of sampling a non-perfect distribution when using a fixed number of bits to represent the parameters of the Bayesian network. This bound approaches zero exponentially fast as one increases the number of bits used to represent the parameters. This result implies that perfect distributions with fixed-length representations exist. We also provide a lower-bound on the number of bits needed to guarantee that a distribution sampled from a uniform Dirichlet distribution is perfect with probability greater than 1/2. This result is useful for constructing randomized reductions for hardness proofs.
Pages: 411-416
PS Link:
PDF Link: /papers/03/p411-meek.pdf
AUTHOR = "Christopher Meek and David Chickering",
TITLE = "Practically Perfect",
BOOKTITLE = "Proceedings of the Nineteenth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-03)",
PUBLISHER = "Morgan Kaufmann",
ADDRESS = "San Francisco, CA",
YEAR = "2003",
PAGES = "411--416"

hosted by DSL   •   site info   •   help