Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings         Authors   Author's Info   Article details         Search    
IPF for Discrete Chain Factor Graphs
Wim Wiegerinck, Tom Heskes
Abstract:
Iterative Proportional Fitting (IPF), combined with EM, is commonly used as an algorithm for likelihood maximization in undirected graphical models. In this paper, we present two iterative algorithms that generalize upon IPF. The first one is for likelihood maximization in discrete chain factor graphs, which we define as a wide class of discrete variable models including undirected graphical models and Bayesian networks, but also chain graphs and sigmoid belief networks. The second one is for conditional likelihood maximization in standard undirected models and Bayesian networks. In both algorithms, the iteration steps are expressed in closed form. Numerical simulations show that the algorithms are competitive with state of the art methods.
Keywords:
Pages: 560-567
PS Link:
PDF Link: /papers/02/p560-wiegerinck.pdf
BibTex:
@INPROCEEDINGS{Wiegerinck02,
AUTHOR = "Wim Wiegerinck and Tom Heskes",
TITLE = "IPF for Discrete Chain Factor Graphs",
BOOKTITLE = "Proceedings of the Eighteenth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-02)",
PUBLISHER = "Morgan Kaufmann",
ADDRESS = "San Francisco, CA",
YEAR = "2002",
PAGES = "560--567"
}


hosted by DSL   •   site info   •   help