Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings         Authors   Author's Info   Article details         Search    
Exploring Localization in Bayesian Networks for Large Expert Systems
Yang Xiang, David Poole, Michael Beddoes
Current Bayesian net representations do not consider structure in the domain and include all variables in a homogeneous network. At any time, a human reasoner in a large domain may direct his attention to only one of a number of natural subdomains, i.e., there is ‘localization' of queries and evidence. In such a case, propagating evidence through a homogeneous network is inefficient since the entire network has to be updated each time. This paper presents multiply sectioned Bayesian networks that enable a (localization preserving) representation of natural subdomains by separate Bayesian subnets. The subnets are transformed into a set of permanent junction trees such that evidential reasoning takes place at only one of them at a time. Probabilities obtained are identical to those that would be obtained from the homogeneous network. We discuss attention shift to a different junction tree and propagation of previously acquired evidence. Although the overall system can be large, computational requirements are governed by the size of only one junction tree.
Pages: 344-351
PS Link:
PDF Link: /papers/92/p344-xiang.pdf
AUTHOR = "Yang Xiang and David Poole and Michael Beddoes",
TITLE = "Exploring Localization in Bayesian Networks for Large Expert Systems",
BOOKTITLE = "Proceedings of the Eighth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-92)",
PUBLISHER = "Morgan Kaufmann",
ADDRESS = "San Mateo, CA",
YEAR = "1992",
PAGES = "344--351"

hosted by DSL   •   site info   •   help