Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings         Authors   Author's Info   Article details         Search    
Exact Inference of Hidden Structure from Sample Data in Noisy-OR Networks
Michael Kearns, Yishay Mansour
Abstract:
In the literature on graphical models, there has been increased attention paid to the problems of learning hidden structure (see Heckerman [H96] for survey) and causal mechanisms from sample data [H96, P88, S93, P95, F98]. In most settings we should expect the former to be difficult, and the latter potentially impossible without experimental intervention. In this work, we examine some restricted settings in which perfectly reconstruct the hidden structure solely on the basis of observed sample data.
Keywords:
Pages: 304-310
PS Link:
PDF Link: /papers/98/p304-kearns.pdf
BibTex:
@INPROCEEDINGS{Kearns98,
AUTHOR = "Michael Kearns and Yishay Mansour",
TITLE = "Exact Inference of Hidden Structure from Sample Data in Noisy-OR Networks",
BOOKTITLE = "Proceedings of the Fourteenth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-98)",
PUBLISHER = "Morgan Kaufmann",
ADDRESS = "San Francisco, CA",
YEAR = "1998",
PAGES = "304--310"
}


hosted by DSL   •   site info   •   help