Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings         Authors   Author's Info   Article details         Search    
Improving the Scalability of Optimal Bayesian Network Learning with External-Memory Frontier Breadth-First Branch and Bound Search
Brandon Malone, Changhe Yuan, Eric Hansen, Susan Bridges
Abstract:
Previous work has shown that the problem of learning the optimal structure of a Bayesian network can be formulated as a shortest path finding problem in a graph and solved using A* search. In this paper, we improve the scalability of this approach by developing a memory-efficient heuristic search algorithm for learning the structure of a Bayesian network. Instead of using A*, we propose a frontier breadth-first branch and bound search that leverages the layered structure of the search graph of this problem so that no more than two layers of the graph, plus solution reconstruction information, need to be stored in memory at a time. To further improve scalability, the algorithm stores most of the graph in external memory, such as hard disk, when it does not fit in RAM. Experimental results show that the resulting algorithm solves significantly larger problems than the current state of the art.
Keywords:
Pages: 479-488
PS Link:
PDF Link: /papers/11/p479-malone.pdf
BibTex:
@INPROCEEDINGS{Malone11,
AUTHOR = "Brandon Malone and Changhe Yuan and Eric Hansen and Susan Bridges",
TITLE = "Improving the Scalability of Optimal Bayesian Network Learning with External-Memory Frontier Breadth-First Branch and Bound Search",
BOOKTITLE = "Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11)",
PUBLISHER = "AUAI Press",
ADDRESS = "Corvallis, Oregon",
YEAR = "2011",
PAGES = "479--488"
}


hosted by DSL   •   site info   •   help