Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings         Authors   Author's Info   Article details         Search    
Mixture Approximations to Bayesian Networks
Volker Tresp, Michael Haft, Reimar Hofmann
Abstract:
Structure and parameters in a Bayesian network uniquely specify the probability distribution of the modeled domain. The locality of both structure and probabilistic information are the great benefits of Bayesian networks and require the modeler to only specify local information. On the other hand this locality of information might prevent the modeler--and even more any other person--from obtaining a general overview of the important relationships within the domain. The goal of the work presented in this paper is to provide an "alternative" view on the knowledge encoded in a Bayesian network which might sometimes be very helpful for providing insights into the underlying domain. The basic idea is to calculate a mixture approximation to the probability distribution represented by the Bayesian network. The mixture component densities can be thought of as representing typical scenarios implied by the Bayesian model, providing intuition about the basic relationships. As an additional benefit, performing inference in the approximate model is very simple and intuitive and can provide additional insights. The computational complexity for the calculation of the mixture approximations criticaly depends on the measure which defines the distance between the probability distribution represented by the Bayesian network and the approximate distribution. Both the KL-divergence and the backward KL-divergence lead to inefficient algorithms. Incidentally, the latter is used in recent work on mixtures of mean field solutions to which the work presented here is closely related. We show, however, that using a mean squared error cost function leads to update equations which can be solved using the junction tree algorithm. We conclude that the mean squared error cost function can be used for Bayesian networks in which inference based on the junction tree is tractable. For large networks, however, one may have to rely on mean field approximations.
Keywords:
Pages: 639-646
PS Link:
PDF Link: /papers/99/p639-tresp.pdf
BibTex:
@INPROCEEDINGS{Tresp99,
AUTHOR = "Volker Tresp and Michael Haft and Reimar Hofmann",
TITLE = "Mixture Approximations to Bayesian Networks",
BOOKTITLE = "Proceedings of the Fifteenth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-99)",
PUBLISHER = "Morgan Kaufmann",
ADDRESS = "San Francisco, CA",
YEAR = "1999",
PAGES = "639--646"
}


hosted by DSL   •   site info   •   help