Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings         Authors   Author's Info   Article details         Search    
Using Belief Functions for Uncertainty Management and Knowledge Acquisition: An Expert Application
Mary McLeish, P. Yao, T. Stirtzinger
Abstract:
This paper describes recent work on an ongoing project in medical diagnosis at the University of Guelph. A domain on which experts are not very good at pinpointing a single disease outcome is explored. On-line medical data is available over a relatively short period of time. Belief Functions (Dempster-Shafer theory) are first extracted from data and then modified with expert opinions. Several methods for doing this are compared and results show that one formulation statistically outperforms the others, including a method suggested by Shafer. Expert opinions and statistically derived information about dependencies among symptoms are also compared. The benefits of using uncertainty management techniques as methods for knowledge acquisition from data are discussed.
Keywords:
Pages: 384-391
PS Link:
PDF Link: /papers/90/p384-mcleish.pdf
BibTex:
@INPROCEEDINGS{McLeish90,
AUTHOR = "Mary McLeish and P. Yao and T. Stirtzinger",
TITLE = "Using Belief Functions for Uncertainty Management and Knowledge Acquisition: An Expert Application",
BOOKTITLE = "Proceedings of the Sixth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-90)",
PUBLISHER = "AUAI Press",
ADDRESS = "Corvallis, Oregon",
YEAR = "1990",
PAGES = "384--391"
}


hosted by DSL   •   site info   •   help