Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings         Authors   Author's Info   Article details         Search    
Interval Influence Diagrams
Kenneth Fertig, John Breese
Abstract:
We describe a mechanism for performing probabilistic reasoning in influence diagrams using interval rather than point valued probabilities. We derive the procedures for node removal (corresponding to conditional expectation) and arc reversal (corresponding to Bayesian conditioning) in influence diagrams where lower bounds on probabilities are stored at each node. The resulting bounds for the transformed diagram are shown to be optimal within the class of constraints on probability distributions that can be expressed exclusively as lower bounds on the component probabilities of the diagram. Sequences of these operations can be performed to answer probabilistic queries with indeterminacies in the input and for performing sensitivity analysis on an influence diagram. The storage requirements and computational complexity of this approach are comparable to those for point-valued probabilistic inference mechanisms, making the approach attractive for performing sensitivity analysis and where probability information is not available. Limited empirical data on an implementation of the methodology are provided.
Keywords: null
Pages: 149-161
PS Link:
PDF Link: /papers/89/p149-fertig.pdf
BibTex:
@INPROCEEDINGS{Fertig89,
AUTHOR = "Kenneth Fertig and John Breese",
TITLE = "Interval Influence Diagrams",
BOOKTITLE = "Uncertainty in Artificial Intelligence 5 Annual Conference on Uncertainty in Artificial Intelligence (UAI-89)",
PUBLISHER = "Elsevier Science",
ADDRESS = "Amsterdam, NL",
YEAR = "1989",
PAGES = "149--161"
}


hosted by DSL   •   site info   •   help