Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Ordering-Based Search: A Simple and Effective Algorithm for Learning Bayesian Networks
Marc Teyssier, Daphne Koller
One of the basic tasks for Bayesian networks (BNs) is that of learning a network structure from data. The BN-learning problem is NP-hard, so the standard solution is heuristic search. Many approaches have been proposed for this task, but only a very small number outperform the baseline of greedy hill-climbing with tabu lists; moreover, many of the proposed algorithms are quite complex and hard to implement. In this paper, we propose a very simple and easy-to-implement method for addressing this task. Our approach is based on the well-known fact that the best network (of bounded in-degree) consistent with a given node ordering can be found very efficiently. We therefore propose a search not over the space of structures, but over the space of orderings, selecting for each ordering the best network consistent with it. This search space is much smaller, makes more global search steps, has a lower branching factor, and avoids costly acyclicity checks. We present results for this algorithm on both synthetic and real data sets, evaluating both the score of the network found and in the running time. We show that ordering-based search outperforms the standard baseline, and is competitive with recent algorithms that are much harder to implement.
Pages: 584-590
PS Link:
PDF Link: /papers/05/p584-teyssier.pdf
AUTHOR = "Marc Teyssier and Daphne Koller",
TITLE = "Ordering-Based Search: A Simple and Effective Algorithm for Learning Bayesian Networks",
BOOKTITLE = "Proceedings of the Twenty-First Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-05)",
ADDRESS = "Arlington, Virginia",
YEAR = "2005",
PAGES = "584--590"

hosted by DSL   •   site info   •   help