Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Maximum Margin Bayesian Networks
Yuhong Guo, Dana Wilkinson, Dale Schuurmans
We consider the problem of learning Bayesian network classifiers that maximize the marginover a set of classification variables. We find that this problem is harder for Bayesian networks than for undirected graphical models like maximum margin Markov networks. The main difficulty is that the parameters in a Bayesian network must satisfy additional normalization constraints that an undirected graphical model need not respect. These additional constraints complicate the optimization task. Nevertheless, we derive an effective training algorithm that solves the maximum margin training problem for a range of Bayesian network topologies, and converges to an approximate solution for arbitrary network topologies. Experimental results show that the method can demonstrate improved generalization performance over Markov networks when the directed graphical structure encodes relevant knowledge. In practice, the training technique allows one to combine prior knowledge expressed as a directed (causal) model with state of the art discriminative learning methods.
Pages: 233-242
PS Link:
PDF Link: /papers/05/p233-guo.pdf
AUTHOR = "Yuhong Guo and Dana Wilkinson and Dale Schuurmans",
TITLE = "Maximum Margin Bayesian Networks",
BOOKTITLE = "Proceedings of the Twenty-First Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-05)",
ADDRESS = "Arlington, Virginia",
YEAR = "2005",
PAGES = "233--242"

hosted by DSL   •   site info   •   help