Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
An Integrated, Conditional Model of Information Extraction and Coreference with Applications to Citation Matching
Ben Wellner, Andrew McCallum, Fuchun Peng, Michael Hay
Abstract:
Although information extraction and coreference resolution appear together in many applications, most current systems perform them as ndependent steps. This paper describes an approach to integrated inference for extraction and coreference based on conditionally-trained undirected graphical models. We discuss the advantages of conditional probability training, and of a coreference model structure based on graph partitioning. On a data set of research paper citations, we show significant reduction in error by using extraction uncertainty to improve coreference citation matching accuracy, and using coreference to improve the accuracy of the extracted fields.
Keywords: null
Pages: 593-601
PS Link:
PDF Link: /papers/04/p593-wellner.pdf
BibTex:
@INPROCEEDINGS{Wellner04,
AUTHOR = "Ben Wellner and Andrew McCallum and Fuchun Peng and Michael Hay",
TITLE = "An Integrated, Conditional Model of Information Extraction and Coreference with Applications to Citation Matching",
BOOKTITLE = "Proceedings of the Twentieth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-04)",
PUBLISHER = "AUAI Press",
ADDRESS = "Arlington, Virginia",
YEAR = "2004",
PAGES = "593--601"
}


hosted by DSL   •   site info   •   help