Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Problem-Focused Incremental Elicitation of Multi-Attribute Utility Models
Vu Ha, Peter Haddawy
Decision theory has become widely accepted in the AI community as a useful framework for planning and decision making. Applying the framework typically requires elicitation of some form of probability and utility information. While much work in AI has focused on providing representations and tools for elicitation of probabilities, relatively little work has addressed the elicitation of utility models. This imbalance is not particularly justified considering that probability models are relatively stable across problem instances, while utility models may be different for each instance. Spending large amounts of time on elicitation can be undesirable for interactive systems used in low-stakes decision making and in time-critical decision making. In this paper we investigate the issues of reasoning with incomplete utility models. We identify patterns of problem instances where plans can be proved to be suboptimal if the (unknown) utility function satisfies certain conditions. We present an approach to planning and decision making that performs the utility elicitation incrementally and in a way that is informed by the domain model.
Keywords: Multi-attribute utility theory, elicitation, decision-theoretic planning.
Pages: 215-222
PS Link: ftp://ftp.cs.uwm.edu/pub/tech_reports/ai/vu-uai97.ps.Z
PDF Link: /papers/97/p215-ha.pdf
AUTHOR = "Vu Ha and Peter Haddawy",
TITLE = "Problem-Focused Incremental Elicitation of Multi-Attribute Utility Models",
BOOKTITLE = "Proceedings of the Thirteenth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-97)",
PUBLISHER = "Morgan Kaufmann",
ADDRESS = "San Francisco, CA",
YEAR = "1997",
PAGES = "215--222"

hosted by DSL   •   site info   •   help