Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Unsupervised Active Learning in Large Domains
Harald Steck, Tommi Jaakkola
Abstract:
Active learning is a powerful approach to analyzing data effectively. We show that the feasibility of active learning depends crucially on the choice of measure with respect to which the query is being optimized. The standard information gain, for example, does not permit an accurate evaluation with a small committee, a representative subset of the model space. We propose a surrogate measure requiring only a small committee and discuss the properties of this new measure. We devise, in addition, a bootstrap approach for committee selection. The advantages of this approach are illustrated in the context of recovering (regulatory) network models.
Keywords:
Pages: 469-476
PS Link:
PDF Link: /papers/02/p469-steck.pdf
BibTex:
@INPROCEEDINGS{Steck02,
AUTHOR = "Harald Steck and Tommi Jaakkola",
TITLE = "Unsupervised Active Learning in Large Domains",
BOOKTITLE = "Proceedings of the Eighteenth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-02)",
PUBLISHER = "Morgan Kaufmann",
ADDRESS = "San Francisco, CA",
YEAR = "2002",
PAGES = "469--476"
}


hosted by DSL   •   site info   •   help