Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Modelling Information Incorporation in Markets, with Application to Detecting and Explaining Events
David Pennock, Sandip Debnath, Eric Glover, C. Giles
Abstract:
We develop a model of how information flows into a market, and derive algorithms for automatically detecting and explaining relevant events. We analyze data from twenty-two "political stock markets" (i.e., betting markets on political outcomes) on the Iowa Electronic Market (IEM). We prove that, under certain efficiency assumptions, prices in such betting markets will on average approach the correct outcomes over time, and show that IEM data conforms closely to the theory. We present a simple model of a betting market where information is revealed over time, and show a qualitative correspondence between the model and real market data. We also present an algorithm for automatically detecting significant events and generating semantic explanations of their origin. The algorithm operates by discovering significant changes in vocabulary on online news sources (using expected entropy loss) that align with major price spikes in related betting markets.
Keywords:
Pages: 405-413
PS Link:
PDF Link: /papers/02/p405-pennock.pdf
BibTex:
@INPROCEEDINGS{Pennock02,
AUTHOR = "David Pennock and Sandip Debnath and Eric Glover and C. Giles",
TITLE = "Modelling Information Incorporation in Markets, with Application to Detecting and Explaining Events",
BOOKTITLE = "Proceedings of the Eighteenth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-02)",
PUBLISHER = "Morgan Kaufmann",
ADDRESS = "San Francisco, CA",
YEAR = "2002",
PAGES = "405--413"
}


hosted by DSL   •   site info   •   help