Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Probabilistic Conceptual Network: A Belief Representation Scheme for Utility-Based Categorization
Kim-Leng Poh, Michael Fehling
Abstract:
Probabilistic conceptual network is a knowledge representation scheme designed for reasoning about concepts and categorical abstractions in utility-based categorization. The scheme combines the formalisms of abstraction and inheritance hierarchies from artificial intelligence, and probabilistic networks from decision analysis. It provides a common framework for representing conceptual knowledge, hierarchical knowledge, and uncertainty. It facilitates dynamic construction of categorization decision models at varying levels of abstraction. The scheme is applied to an automated machining problem for reasoning about the state of the machine at varying levels of abstraction in support of actions for maintaining competitiveness of the plant.
Keywords:
Pages: 166-173
PS Link:
PDF Link: /papers/93/p166-poh.pdf
BibTex:
@INPROCEEDINGS{Poh93,
AUTHOR = "Kim-Leng Poh and Michael Fehling",
TITLE = "Probabilistic Conceptual Network: A Belief Representation Scheme for Utility-Based Categorization",
BOOKTITLE = "Proceedings of the Ninth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-93)",
PUBLISHER = "Morgan Kaufmann",
ADDRESS = "San Francisco, CA",
YEAR = "1993",
PAGES = "166--173"
}


hosted by DSL   •   site info   •   help