Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Sample-and-Accumulate Algorithms for Belief Updating in Bayes Networks
Eugene Santos Jr., Solomon Shimony, Edward Williams
Belief updating in Bayes nets, a well known computationally hard problem, has recently been approximated by several deterministic algorithms, and by various randomized approximation algorithms. Deterministic algorithms usually provide probability bounds, but have an exponential runtime. Some randomized schemes have a polynomial runtime, but provide only probability estimates. We present randomized algorithms that enumerate high-probability partial instantiations, resulting in probability bounds. Some of these algorithms are also sampling algorithms. Specifically, we introduce and evaluate a variant of backward sampling, both as a sampling algorithm and as a randomized enumeration algorithm. We also relax the implicit assumption used by both sampling and accumulation algorithms, that query nodes must be instantiated in all the samples.
Keywords: Probabilistic reasoning, Bayes networks, belief updating, approximation algorithms,
Pages: 477-484
PS Link: http://www.cs.bgu.ac.il/~shimony/sample.ps
PDF Link: /papers/96/p477-santos.pdf
AUTHOR = "Eugene Santos Jr. and Solomon Shimony and Edward Williams",
TITLE = "Sample-and-Accumulate Algorithms for Belief Updating in Bayes Networks",
BOOKTITLE = "Proceedings of the Twelfth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-96)",
PUBLISHER = "Morgan Kaufmann",
ADDRESS = "San Francisco, CA",
YEAR = "1996",
PAGES = "477--484"

hosted by DSL   •   site info   •   help