Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Active Learning with Expert Advice
Peilin Zhao, Steven Hoi, Jinfeng Zhuang
Conventional learning with expert advice methods assumes a learner is always receiving the outcome (e.g., class labels) of every incoming training instance at the end of each trial. In real applications, acquiring the outcome from oracle can be costly or time consuming. In this paper, we address a new problem of active learning with expert advice, where the outcome of an instance is disclosed only when it is requested by the online learner. Our goal is to learn an accurate prediction model by asking the oracle the number of questions as small as possible. To address this challenge, we propose a framework of active forecasters for online active learning with expert advice, which attempts to extend two regular forecasters, i.e., Exponentially Weighted Average Forecaster and Greedy Forecaster, to tackle the task of active learning with expert advice. We prove that the proposed algorithms satisfy the Hannan consistency under some proper assumptions, and validate the efficacy of our technique by an extensive set of experiments.
Pages: 704-713
PS Link:
PDF Link: /papers/13/p704-zhao.pdf
AUTHOR = "Peilin Zhao and Steven Hoi and Jinfeng Zhuang",
TITLE = "Active Learning with Expert Advice",
BOOKTITLE = "Proceedings of the Twenty-Ninth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-13)",
ADDRESS = "Corvallis, Oregon",
YEAR = "2013",
PAGES = "704--713"

hosted by DSL   •   site info   •   help