Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
A Model-Based Approach to Rounding in Spectral Clustering
Leonard Poon, April Liu, Tengfei Liu, Nevin Zhang
Abstract:
In spectral clustering, one defines a similarity matrix for a collection of data points, transforms the matrix to get the Laplacian matrix, finds the eigenvectors of the Laplacian matrix, and obtains a partition of the data using the leading eigenvectors. The last step is sometimes referred to as rounding, where one needs to decide how many leading eigenvectors to use, to determine the number of clusters, and to partition the data points. In this paper, we propose a novel method for rounding. The method differs from previous methods in three ways. First, we relax the assumption that the number of clusters equals the number of eigenvectors used. Second, when deciding the number of leading eigenvectors to use, we not only rely on information contained in the leading eigenvectors themselves, but also use subsequent eigenvectors. Third, our method is model-based and solves all the three subproblems of rounding using a class of graphical models called latent tree models. We evaluate our method on both synthetic and real-world data. The results show that our method works correctly in the ideal case where between-clusters similarity is 0, and degrades gracefully as one moves away from the ideal case.
Keywords:
Pages: 685-694
PS Link:
PDF Link: /papers/12/p685-poon.pdf
BibTex:
@INPROCEEDINGS{Poon12,
AUTHOR = "Leonard Poon and April Liu and Tengfei Liu and Nevin Zhang",
TITLE = "A Model-Based Approach to Rounding in Spectral Clustering",
BOOKTITLE = "Proceedings of the Twenty-Eighth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-12)",
PUBLISHER = "AUAI Press",
ADDRESS = "Corvallis, Oregon",
YEAR = "2012",
PAGES = "685--694"
}


hosted by DSL   •   site info   •   help