Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Sample-efficient Nonstationary Policy Evaluation for Contextual Bandits
Miroslav Dudik, Dumitru Erhan, John Langford, Lihong Li
Abstract:
We present and prove properties of a new offline policy evaluator for an exploration learning setting which is superior to previous evaluators. In particular, it simultaneously and correctly incorporates techniques from importance weighting, doubly robust evaluation, and nonstationary policy evaluation approaches. In addition, our approach allows generating longer histories by careful control of a bias-variance tradeoff, and further decreases variance by incorporating information about randomness of the target policy. Empirical evidence from synthetic and realworld exploration learning problems shows the new evaluator successfully unifies previous approaches and uses information an order of magnitude more efficiently.
Keywords:
Pages: 247-254
PS Link:
PDF Link: /papers/12/p247-dudik.pdf
BibTex:
@INPROCEEDINGS{Dudik12,
AUTHOR = "Miroslav Dudik and Dumitru Erhan and John Langford and Lihong Li",
TITLE = "Sample-efficient Nonstationary Policy Evaluation for Contextual Bandits",
BOOKTITLE = "Proceedings of the Twenty-Eighth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-12)",
PUBLISHER = "AUAI Press",
ADDRESS = "Corvallis, Oregon",
YEAR = "2012",
PAGES = "247--254"
}


hosted by DSL   •   site info   •   help