Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Budget Optimization for Sponsored Search: Censored Learning in MDPs
Kareem Amin, Michael Kearns, Peter Key, Anton Schwaighofer
Abstract:
We consider the budget optimization problem faced by an advertiser participating in repeated sponsored search auctions, seeking to maximize the number of clicks attained under that budget. We cast the budget optimization problem as a Markov Decision Process (MDP) with censored observations, and propose a learning algorithm based on the wellknown Kaplan-Meier or product-limit estimator. We validate the performance of this algorithm by comparing it to several others on a large set of search auction data from Microsoft adCenter, demonstrating fast convergence to optimal performance.
Keywords:
Pages: 54-63
PS Link:
PDF Link: /papers/12/p54-amin.pdf
BibTex:
@INPROCEEDINGS{Amin12,
AUTHOR = "Kareem Amin and Michael Kearns and Peter Key and Anton Schwaighofer",
TITLE = "Budget Optimization for Sponsored Search: Censored Learning in MDPs",
BOOKTITLE = "Proceedings of the Twenty-Eighth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-12)",
PUBLISHER = "AUAI Press",
ADDRESS = "Corvallis, Oregon",
YEAR = "2012",
PAGES = "54--63"
}


hosted by DSL   •   site info   •   help