Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Learning to Rank With Bregman Divergences and Monotone Retargeting
Sreangsu Acharyya, Oluwasanmi Koyejo, Joydeep Ghosh
Abstract:
This paper introduces a novel approach for learning to rank (LETOR) based on the notion of monotone retargeting. It involves minimizing a divergence between all monotonic increasing transformations of the training scores and a parameterized prediction function. The minimization is both over the transformations as well as over the parameters. It is applied to Bregman divergences, a large class of "distance like" functions that were recently shown to be the unique class that is statistically consistent with the normalized discounted gain (NDCG) criterion [19]. The algorithm uses alternating projection style updates, in which one set of simultaneous projections can be computed independent of the Bregman divergence and the other reduces to parameter estimation of a generalized linear model. This results in easily implemented, efficiently parallelizable algorithm for the LETOR task that enjoys global optimum guarantees under mild conditions. We present empirical results on benchmark datasets showing that this approach can outperform the state of the art NDCG consistent techniques.
Keywords:
Pages: 15-25
PS Link:
PDF Link: /papers/12/p15-acharyya.pdf
BibTex:
@INPROCEEDINGS{Acharyya12,
AUTHOR = "Sreangsu Acharyya and Oluwasanmi Koyejo and Joydeep Ghosh",
TITLE = "Learning to Rank With Bregman Divergences and Monotone Retargeting",
BOOKTITLE = "Proceedings of the Twenty-Eighth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-12)",
PUBLISHER = "AUAI Press",
ADDRESS = "Corvallis, Oregon",
YEAR = "2012",
PAGES = "15--25"
}


hosted by DSL   •   site info   •   help