Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Factored Filtering of Continuous-Time Systems
E. Celikkaya, Christian Shelton, William Lam
We consider filtering for a continuous-time, or asynchronous, stochastic system where the full distribution over states is too large to be stored or calculated. We assume that the rate matrix of the system can be compactly represented and that the belief distribution is to be approximated as a product of marginals. The essential computation is the matrix exponential. We look at two different methods for its computation: ODE integration and uniformization of the Taylor expansion. For both we consider approximations in which only a factored belief state is maintained. For factored uniformization we demonstrate that the KL-divergence of the filtering is bounded. Our experimental results confirm our factored uniformization performs better than previously suggested uniformization methods and the mean field algorithm.
Pages: 61-68
PS Link:
PDF Link: /papers/11/p61-celikkaya.pdf
AUTHOR = "E. Celikkaya and Christian Shelton and William Lam",
TITLE = "Factored Filtering of Continuous-Time Systems",
BOOKTITLE = "Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11)",
ADDRESS = "Corvallis, Oregon",
YEAR = "2011",
PAGES = "61--68"

hosted by DSL   •   site info   •   help