Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Identifiability of Causal Graphs using Functional Models
Jonas Peters, Joris Mooij, Dominik Janzing, Bernhard Schoelkopf
Abstract:
This work addresses the following question: Under what assumptions on the data generating process can one infer the causal graph from the joint distribution? The approach taken by conditional independence-based causal discovery methods is based on two assumptions: the Markov condition and faithfulness. It has been shown that under these assumptions the causal graph can be identified up to Markov equivalence (some arrows remain undirected) using methods like the PC algorithm. In this work we propose an alternative by defining Identifiable Functional Model Classes (IFMOCs). As our main theorem we prove that if the data generating process belongs to an IFMOC, one can identify the complete causal graph. To the best of our knowledge this is the first identifiability result of this kind that is not limited to linear functional relationships. We discuss how the IFMOC assumption and the Markov and faithfulness assumptions relate to each other and explain why we believe that the IFMOC assumption can be tested more easily on given data. We further provide a practical algorithm that recovers the causal graph from finitely many data; experiments on simulated data support the theoretical findings.
Keywords:
Pages: 589-598
PS Link:
PDF Link: /papers/11/p589-peters.pdf
BibTex:
@INPROCEEDINGS{Peters11,
AUTHOR = "Jonas Peters and Joris Mooij and Dominik Janzing and Bernhard Schoelkopf",
TITLE = "Identifiability of Causal Graphs using Functional Models",
BOOKTITLE = "Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11)",
PUBLISHER = "AUAI Press",
ADDRESS = "Corvallis, Oregon",
YEAR = "2011",
PAGES = "589--598"
}


hosted by DSL   •   site info   •   help