Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Sum-Product Networks: A New Deep Architecture
Hoifung Poon, Pedro Domingos
The key limiting factor in graphical model inference and learning is the complexity of the partition function. We thus ask the question: what are general conditions under which the partition function is tractable? The answer leads to a new kind of deep architecture, which we call sum-product networks (SPNs). SPNs are directed acyclic graphs with variables as leaves, sums and products as internal nodes, and weighted edges. We show that if an SPN is complete and consistent it represents the partition function and all marginals of some graphical model, and give semantics to its nodes. Essentially all tractable graphical models can be cast as SPNs, but SPNs are also strictly more general. We then propose learning algorithms for SPNs, based on backpropagation and EM. Experiments show that inference and learning with SPNs can be both faster and more accurate than with standard deep networks. For example, SPNs perform image completion better than state-of-the-art deep networks for this task. SPNs also have intriguing potential connections to the architecture of the cortex.
Pages: 337-346
PS Link:
PDF Link: /papers/11/p337-poon.pdf
AUTHOR = "Hoifung Poon and Pedro Domingos",
TITLE = "Sum-Product Networks: A New Deep Architecture",
BOOKTITLE = "Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-11)",
ADDRESS = "Corvallis, Oregon",
YEAR = "2011",
PAGES = "337--346"

hosted by DSL   •   site info   •   help