Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Learning Structural Changes of Gaussian Graphical Models in Controlled Experiments
Bai Zhang, Yue Wang
Abstract:
Graphical models are widely used in scienti fic and engineering research to represent conditional independence structures between random variables. In many controlled experiments, environmental changes or external stimuli can often alter the conditional dependence between the random variables, and potentially produce significant structural changes in the corresponding graphical models. Therefore, it is of great importance to be able to detect such structural changes from data, so as to gain novel insights into where and how the structural changes take place and help the system adapt to the new environment. Here we report an effective learning strategy to extract structural changes in Gaussian graphical model using l1-regularization based convex optimization. We discuss the properties of the problem formulation and introduce an efficient implementation by the block coordinate descent algorithm. We demonstrate the principle of the approach on a numerical simulation experiment, and we then apply the algorithm to the modeling of gene regulatory networks under different conditions and obtain promising yet biologically plausible results.
Keywords:
Pages: 701-708
PS Link:
PDF Link: /papers/10/p701-zhang.pdf
BibTex:
@INPROCEEDINGS{Zhang10,
AUTHOR = "Bai Zhang and Yue Wang",
TITLE = "Learning Structural Changes of Gaussian Graphical Models in Controlled Experiments",
BOOKTITLE = "Proceedings of the Twenty-Sixth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-10)",
PUBLISHER = "AUAI Press",
ADDRESS = "Corvallis, Oregon",
YEAR = "2010",
PAGES = "701--708"
}


hosted by DSL   •   site info   •   help