Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Rollout Sampling Policy Iteration for Decentralized POMDPs
Feng Wu, Shlomo Zilberstein, Xiaoping Chen
Abstract:
We present decentralized rollout sampling policy iteration (DecRSPI) - a new algorithm for multi-agent decision problems formalized as DEC-POMDPs. DecRSPI is designed to improve scalability and tackle problems that lack an explicit model. The algorithm uses Monte- Carlo methods to generate a sample of reachable belief states. Then it computes a joint policy for each belief state based on the rollout estimations. A new policy representation allows us to represent solutions compactly. The key benefits of the algorithm are its linear time complexity over the number of agents, its bounded memory usage and good solution quality. It can solve larger problems that are intractable for existing planning algorithms. Experimental results confirm the effectiveness and scalability of the approach.
Keywords:
Pages: 666-673
PS Link:
PDF Link: /papers/10/p666-wu.pdf
BibTex:
@INPROCEEDINGS{Wu10,
AUTHOR = "Feng Wu and Shlomo Zilberstein and Xiaoping Chen",
TITLE = "Rollout Sampling Policy Iteration for Decentralized POMDPs",
BOOKTITLE = "Proceedings of the Twenty-Sixth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-10)",
PUBLISHER = "AUAI Press",
ADDRESS = "Corvallis, Oregon",
YEAR = "2010",
PAGES = "666--673"
}


hosted by DSL   •   site info   •   help