Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Probabilistic Reasoning About Ship Images
Lashon Booker, Naveen Hota
One of the most important aspects of current expert systems technology is the ability to make causal inferences about the impact of new evidence. When the domain knowledge and problem knowledge are uncertain and incomplete Bayesian reasoning has proven to be an effective way of forming such inferences [3,4,8]. While several reasoning schemes have been developed based on Bayes Rule, there has been very little work examining the comparative effectiveness of these schemes in a real application. This paper describes a knowledge based system for ship classification [1], originally developed using the PROSPECTOR updating method [2], that has been reimplemented to use the inference procedure developed by Pearl and Kim [4,5]. We discuss our reasons for making this change, the implementation of the new inference engine, and the comparative performance of the two versions of the system.
Keywords: Expert Systems, Casual Inferences, Bayesian Reasoning
Pages: 371-379
PS Link:
PDF Link: /papers/86/p371-booker.pdf
AUTHOR = "Lashon Booker and Naveen Hota",
TITLE = "Probabilistic Reasoning About Ship Images",
BOOKTITLE = "Uncertainty in Artificial Intelligence 2 Annual Conference on Uncertainty in Artificial Intelligence (UAI-86)",
PUBLISHER = "Elsevier Science",
ADDRESS = "Amsterdam, NL",
YEAR = "1986",
PAGES = "371--379"

hosted by DSL   •   site info   •   help