Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Multiple Source Adaptation and the Renyi Divergence
Yishay Mansour, Mehryar Mohri, Afshin Rostamizadeh
This paper presents a novel theoretical study of the general problem of multiple source adaptation using the notion of Renyi divergence. Our results build on our previous work [12], but significantly broaden the scope of that work in several directions. We extend previous multiple source loss guarantees based on distribution weighted combinations to arbitrary target distributions P, not necessarily mixtures of the source distributions, analyze both known and unknown target distribution cases, and prove a lower bound. We further extend our bounds to deal with the case where the learner receives an approximate distribution for each source instead of the exact one, and show that similar loss guarantees can be achieved depending on the divergence between the approximate and true distributions. We also analyze the case where the labeling functions of the source domains are somewhat different. Finally, we report the results of experiments with both an artificial data set and a sentiment analysis task, showing the performance benefits of the distribution weighted combinations and the quality of our bounds based on the Renyi divergence.
Keywords: null
Pages: 367-374
PS Link:
PDF Link: /papers/09/p367-mansour.pdf
AUTHOR = "Yishay Mansour and Mehryar Mohri and Afshin Rostamizadeh",
TITLE = "Multiple Source Adaptation and the Renyi Divergence",
BOOKTITLE = "Proceedings of the Twenty-Fifth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-09)",
ADDRESS = "Corvallis, Oregon",
YEAR = "2009",
PAGES = "367--374"

hosted by DSL   •   site info   •   help