Uncertainty in Artificial Intelligence
First Name   Last Name   Password   Forgot Password   Log in!
    Proceedings   Proceeding details   Article details         Authors         Search    
Multi-View Learning in the Presence of View Disagreement
C. Christoudias, Raquel Urtasun, Trevor Darrell
Traditional multi-view learning approaches suffer in the presence of view disagreement,i.e., when samples in each view do not belong to the same class due to view corruption, occlusion or other noise processes. In this paper we present a multi-view learning approach that uses a conditional entropy criterion to detect view disagreement. Once detected, samples with view disagreement are filtered and standard multi-view learning methods can be successfully applied to the remaining samples. Experimental evaluation on synthetic and audio-visual databases demonstrates that the detection and filtering of view disagreement considerably increases the performance of traditional multi-view learning approaches.
Pages: 88-96
PS Link:
PDF Link: /papers/08/p88-christoudias.pdf
AUTHOR = "C. Christoudias and Raquel Urtasun and Trevor Darrell",
TITLE = "Multi-View Learning in the Presence of View Disagreement",
BOOKTITLE = "Proceedings of the Twenty-Fourth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-08)",
ADDRESS = "Corvallis, Oregon",
YEAR = "2008",
PAGES = "88--96"

hosted by DSL   •   site info   •   help